Nonlinear Dielectric Response of Nanocomposites Based on Potassium Dihydrogen Phosphate

  • Alexey Milinskii
  • Sergey Baryshnikov
  • Vladimir Parfenov
  • Svetlana Kozlola
  • Nguyen Hoai Thuong
Regular Paper
  • 19 Downloads

Abstract

Nonlinear properties of nanocomposites based on KH2PO4 embedded in nanosized silica matrices with pore sizes of 2.6 and 3.8 nm were investigated. It was found that the structural phase transition temperature for KH2PO4 nanoparticles was higher than that for bulk KH2PO4. Investigations of temperature dependence of the second (\(\upchi_{2}^{\prime }\))- and third (\(\upchi_{3}^{\prime }\))-order dielectric susceptibilities showed the presence of nonlinear properties in the paraelectric phase for the bulk and nanocomposite samples.

Keywords

Nanocomposites Ferroelectrics Dielectric susceptibility Nonlinear properties 

References

  1. 1.
    S.V. Pankova, V.V. Poborchii, V.G. Solovev, J. Phys. Condens. Matter 8, 203 (1996).  https://doi.org/10.1088/0953-8984/8/12/001 CrossRefGoogle Scholar
  2. 2.
    D. Yadlovker, S. Berger, Phys. Rev. B 71, 184112 (2005).  https://doi.org/10.1103/PhysRevB.71.184112 CrossRefGoogle Scholar
  3. 3.
    S.V. Baryshnikov, E.V. Charnaya, A.Yu. Milinskii, Yu.V. Patrushev, Phys. Solid State 55, 2566 (2013).  https://doi.org/10.1134/S1063783413120056 CrossRefGoogle Scholar
  4. 4.
    S.V. Baryshnikov, E.V. Charnaya, A.Yu. Milinskiy, Ferroelectrics 471, 109 (2014).  https://doi.org/10.1080/00150193.2014.963428 CrossRefGoogle Scholar
  5. 5.
    S.V. Baryshnikov, E.V. Charnaya, A.Yu. Milinskii, A.Yu. Goikhman, C. Tien, M.K. Lee, L.J. Chang, Phys. Solid State 55, 1070 (2013).  https://doi.org/10.1134/S1063783413050041 CrossRefGoogle Scholar
  6. 6.
    S.V. Baryshnikov, E.V. Charnaya, Yu.A. Shatskaya, A.Yu. Milinskiy, M.I. Samoilovich, D. Michel, C. Tien, Phys. Solid State 53, 1212 (2013).  https://doi.org/10.1134/S1063783411060059 CrossRefGoogle Scholar
  7. 7.
    A.R. Geǐvandov, S.G. Yudin, V.M. Fridkin, S. Ducharme, Phys. Solid State 47, 1590 (2005).  https://doi.org/10.1134/1.2014523 CrossRefGoogle Scholar
  8. 8.
    S.G. Yudin, L.M. Blinov, N.N. Petukhova, S.P. Palto, J. Exp. Theor. Phys. Lett. 70, 633 (1999).  https://doi.org/10.1134/1.568227 CrossRefGoogle Scholar
  9. 9.
    H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971), p. 336Google Scholar
  10. 10.
    J.E. Tibballs, R.J. Nelmes, G.J. McIntyre, J. Phys. C Solid State Phys. 15, 37 (1982)CrossRefGoogle Scholar
  11. 11.
    S.D. Kirik, V.A. Parfenov, S.M. Zharkov, Microp. Mesop. Mater. 195, 21 (2014).  https://doi.org/10.1016/j.micromeso.2014.04.012 CrossRefGoogle Scholar
  12. 12.
    S.D. Kirik, V.A. Parfenov, Glass Phys. Chem. 40, 49 (2014).  https://doi.org/10.1134/S1087659614010118 CrossRefGoogle Scholar
  13. 13.
    S. Miga, J. Dec, W. Kleemann, Rev. Sci. Instrum. 78, 033902 (2007).  https://doi.org/10.1063/1.2712792 CrossRefGoogle Scholar
  14. 14.
    S. Ikeda, H. Kominami, K. Koyama, Y. Wada, J. Appl. Phys. 62, 3339 (1987).  https://doi.org/10.1063/1.339294 CrossRefGoogle Scholar
  15. 15.
    K.W. Wagner, Die Isolierstoffe der Elektrotechnik (Springer, Berlin, 1957), p. 422Google Scholar
  16. 16.
    Yu.P. Emets, Tech. Phys. 48, 317 (2003).  https://doi.org/10.1134/1.1562260 CrossRefGoogle Scholar
  17. 17.
    S.V. Baryshnikov, N.P. Andriyanova, E.V. Stukova, E.V. Charnaya, C. Tien, D. Michel, Phys. Solid State 49, 791 (2007).  https://doi.org/10.1134/S1063783407040324 CrossRefGoogle Scholar
  18. 18.
    W.L. Zhong, Y.G. Wang, P.L. Zhang, Phys. Rev. B 50, 698 (1994).  https://doi.org/10.1103/PhysRevB.50.698 CrossRefGoogle Scholar
  19. 19.
    Y.G. Wang, W.L. Zhong, P.L. Zhang, Solid State Commun. 90, 329 (1994).  https://doi.org/10.1016/0038-1098(94)90162-7 CrossRefGoogle Scholar
  20. 20.
    C.L. Wang, Y. Xin, X.S. Wang, W.L. Zhong, Phys. Rev. B 62, 11423 (2000).  https://doi.org/10.1103/PhysRevB.62.11423 CrossRefGoogle Scholar
  21. 21.
    P. Sedykh, D. Michel, Phys. Rev. B 79, 134119 (2009).  https://doi.org/10.1103/PhysRevB.79.134119 CrossRefGoogle Scholar
  22. 22.
    E.V. Charnaya, A.L. Pirozerskii, C. Tien, M.K. Lee, Ferroelectrics 350, 75 (2007).  https://doi.org/10.1080/00150190701369883 CrossRefGoogle Scholar
  23. 23.
    A.L. Pirozerskiĭ, E.V. Charnaya, Phys. Solid State 52, 620 (2010).  https://doi.org/10.1134/S106378341003025X CrossRefGoogle Scholar
  24. 24.
    S. Miga, J. Dec, Ferroelectrics 367, 223 (2008).  https://doi.org/10.1080/00150190802377553 CrossRefGoogle Scholar
  25. 25.
    A.Yu. Milinskiy, E.V. Stukova, Bull. Russ. Acad. Sci. Phys. 80, 1089 (2016).  https://doi.org/10.3103/S1062873816090331 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018
corrected publication 04/2018

Authors and Affiliations

  • Alexey Milinskii
    • 1
  • Sergey Baryshnikov
    • 2
  • Vladimir Parfenov
    • 3
  • Svetlana Kozlola
    • 3
  • Nguyen Hoai Thuong
    • 4
    • 5
  1. 1.Blagoveschensk State Pedagogical UniversityBlagoveshchenskRussia
  2. 2.Amur State UniversityBlagoveshchenskRussia
  3. 3.Institute of Chemistry and Chemical TechnologyKrasnoyarskRussia
  4. 4.Division of Computational Physics, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Electrical & Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations