Skip to main content
Log in

A Study on the Life-Time Assessment Ways and Various Failure Types of 154 kV Porcelain Insulators Installed in South Korea

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we investigated 154-kV porcelain insulators with various failure types and discussed the causes of the failures. In South Korea, 1,223,538 154 kV porcelain insulators (produced by a foreign company) are in active service in 2017, installed in overhead power transmission lines. Among them, 797,659 (65.19%) have been used over 30 years in active service. Porcelain insulators employed in transmission lines need to exhibit a high electrical resistance, mechanical strength, stability, and ability to maintain satisfactory performance under various environments. In this study, a life-time assessment strategy is proposed for the 154 kV porcelain insulators according to the operational circumstances. The life-time extrapolation of porcelain insulators in 154-kV transmission lines is very challenging, owing to the complex aging process. As the first step of the life-time extrapolation, we characterized the failure types. Various factors such as temperature, rain, dust, acids, corrosion, vibrations, and mechanical and electrical stresses, over a long period of time can lead to various types of failures in porcelain insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.F. Hampton, Flashover mechanism of polluted insulation. Proc. IEE 111, 985 (1964). https://doi.org/10.1049/piee.1964.0155

    Google Scholar 

  2. P.J. Lambeth, Effect of pollution on high-voltage outdoor insulator. Proc. IEE IEE Rev. 118, 1107 (1971). https://doi.org/10.1049/piee.1971.0245

    Google Scholar 

  3. G. Karady, Surface contamination: genesis, detection, and control, 945 (1979)

  4. E. Nasser, IEEE Conference Paper, Paper. No. 70

  5. T.C. Cheng, C.T. Wu, Performance of HVDC insulators under contaminated conditions. IEEE Trans. Electr. Insul. 3, 270 (1980). https://doi.org/10.1109/tei.1980.298320

    Article  Google Scholar 

  6. M. Kawai, Research at project UHV on the performance of contaminated insulators Part I Basic problems. IEEE Trans. Power Appar. Syst. PAS-92, 1102 (1973). https://doi.org/10.1109/tpas.1973.293677

    Article  Google Scholar 

  7. G. Karady, The effect of fog parameters on the testing of artificially contaminated insulators in a fog chamber. IEEE Trans. Power Appar. Syst. 94, 378 (1975). https://doi.org/10.1109/t-pas.1975.31864

    Article  Google Scholar 

  8. M.M. Hussain, S. Farokhi, S. McMeekin, M. Farzaneh, IEEE Trans. Dielectr. Electr. Insul. 24, 1068 (2017). https://doi.org/10.1109/TDEI.2017.006386

    Article  Google Scholar 

  9. P. Haberecht, Pollution deposition rates on insulator (HV) surfaces for use in atmospheric corrosivity estimation. Doctor Thesis

  10. A. Rawat, R. Gorur, Microstructure based evaluation of field aged and new porcelain suspension insulators. IEEE Trans. Dielectr. Electr. Insul. 16, 107 (2009). https://doi.org/10.1109/TDEI.2009.4784557

    Article  Google Scholar 

  11. E. Cherney, A.C. Baker, J. Kuffel, Z. Lodi, A. Philips, D.G. Powell, G.A. Stewart, Evaluation of and replacement strategies for aged high voltage porcelain suspension-type insulators. IEEE Trans. Power Deliv. 29, 275 (2014). https://doi.org/10.1109/TPWRD.2013.2288776

    Article  Google Scholar 

  12. E. Cherney, Electromechanical integrity of suspension insulator. Ontario Hydro Res. Rev. 5, 19 (1982)

    Google Scholar 

  13. E. Cherney, Cement growth failure of porcelain suspension insulators. IEEE Trans. Power App. Syst. PAS-102, 2765 (1983). https://doi.org/10.1109/tpas.1983.317959

    Article  Google Scholar 

  14. T. Tsuru, in 16th International Corrosion Congress, 56, paper 18-C (2005)

  15. A.A. Mikhailov, The classification system of ISO 9223 Standard and the dose-response functions assessing the corrosivity of outdoor atmospheres. Prot. Met. 40, 541 (2004)

    Article  Google Scholar 

  16. I. Suzuki, Corrosion–Resistant Coatings Technology (Marcel Dekker Inc., New York, 1989)

    Google Scholar 

  17. C. Leygraf, I.O. Wallinder, J. Tidblad, T. Graedel, Atmospheric Corrosion (Wiley, New York, 2016)

    Book  Google Scholar 

  18. ISO 9223, Corrosion of Metals and Alloys: Corrosivity of Atmospheres—Classification (ISO 9223: 1992. Switzerland, ISO, 1992), p. 1–13

  19. D.E. Alexander, Portland cement curing and volume characteristics. IEEE Trans. Power Appar. Syst. 96, 14 (1977). https://doi.org/10.1109/T-PAS.1977.32300

    Article  Google Scholar 

  20. S.-W. Han, Accelerating aging of transmission line porcelain suspension insulators by autoclaving, in IEEE Electrical Insulation Conference and Electrical Manufacturing Expo, vol. 114 (2007). https://doi.org/10.1109/eeic.2007.4562600

  21. K. Chrzan, Hygroscopic properties of pollutants on HV insulators. IEEE Trans. Electr. Insul. 24, 107 (1989). https://doi.org/10.1109/14.19874

    Article  Google Scholar 

  22. F. Obenaus, Contamination State and Creepage Path. Deutsche Elektrotechnik 12, 135 (1958)

    Google Scholar 

  23. M.H. Samimi, Effect of humidity on the flashover voltage of insulators at varying humidity and temperature conditions. J. Basic Appl. Sci. Res. 2, 4299 (2012)

    Google Scholar 

  24. M. Ishii, Effect of ambient temperature on the performance of contaminated DC insulators. IEEE Trans. Electr. Insul. 2, 129 (1984). https://doi.org/10.1109/tei.1984.298784

    Article  Google Scholar 

  25. M.A. E1-Koshairy, F.A. Rizk, Performance of EHV transmission line insulators under desert pollution conditions. CIGRE Paper (1970)

  26. M. Farzaneh, AC flashover performance of insulators covered with artificial ice. IEEE Trans. Power Deliv. 10, 1038 (1995). https://doi.org/10.1109/61.400824

    Article  Google Scholar 

  27. T. Fujimura, Performance of insulators covered with snow or ice. IEEE Trans. Power App. Syst. 98, 1621 (1979). https://doi.org/10.1109/tpas.1979.319479

    Article  Google Scholar 

  28. K. Morita, Steep impulse voltage characteristics of suspension insulators. Electr. Eng. Japan 115, 21 (2007). https://doi.org/10.1002/eej.4391150203

    Article  Google Scholar 

  29. E. S. Zobel, Insulators lose strength with age. Elect. World 40–42 (1962)

  30. A. A. Klein, Constitution and microstructure of porcelain. No. 79-81. US Government Printing Office (1916)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsin Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, IH., Kim, TK., Yoon, YB. et al. A Study on the Life-Time Assessment Ways and Various Failure Types of 154 kV Porcelain Insulators Installed in South Korea. Trans. Electr. Electron. Mater. 19, 188–194 (2018). https://doi.org/10.1007/s42341-018-0027-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0027-7

Keywords

Navigation