Skip to main content
Log in

Experimental and Numerical Investigations of Effect of Alternating Current Interference Corrosion on Neighboring Pipelines

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

High-voltage (HV) power lines sometimes share the same path as buried pipelines that are protected by an insulation coating and cathodic protection (CP). However, the neighboring HV power lines induce an alternating current (AC) that causes corrosion damage to metallic structures, which is known as the AC corrosion phenomenon. In this study, we conducted an experimental investigation on a laboratory model to realize electrochemical tests on a pipeline steel sample. Afterward, we performed numerical simulation studies of the electrochemical reactions involved in the corrosion, such as the anodic and cathodic processes, i.e., the iron oxidation and reduction of both oxygen and hydrogen. We also simulated the CP, AC corrosion, and deformation of the steel pipeline sample. Finally, to remedy the problem of AC corrosion damage, we developed a monitoring and correction program to optimize it. The main novelty of our work resides in our experimental and numerical simulation results, which were in good agreement, along with the development of the program for the automatic mitigation of AC corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Di Biase, in AC Corrosion on Cathodically Protected Pipelines: Guidelines for Risk Assessment and Mitigation Measures, ed. by CeoCor (Corrosion Protection and Pipeline Protection European Committee CLC, Luxembourg, 2001)

  2. P.N. Mikropoulos, T.E. Tsovilis, I.E.T. Generation, Transm. Distrib. 4, 12 (2010). https://doi.org/10.1049/iet-gtd.2009.0685

    Google Scholar 

  3. A. Brenna, L. Lazzari, C. Castiglioni, A Proposal of AC Corrosion Mechanism of Carbon Steel in Cathodic Protection Condition, Ph. D. Dissertation (Italy) (Materials Engineering Polytechnic, Milano, Italy, 2012)

  4. Y. Hosokawa, F. Kajiyama, Y. Nakamura, in Proceeding of the International Conference Corrosion 2004 (NACE International March 2004) 60, pp. 304–312. https://doi.org/10.5006/1.3287735

  5. A. Ametani, I.E.T. Science, Meas. Technol. 2, 2 (2008). https://doi.org/10.1049/iet-smt:20060143

    Google Scholar 

  6. L.V. Nielsen, K.V. Nielsen, B. Baumgarten, H. Breuning-Madsen, P. Cohn, H.B. Rosenberg, in Proceeding of the International Conference NACE Corrosion 2004 (New Orleans) (NACE Corrosion, New Orleans 2004 28 March–1 April) pn. 04211

  7. N. Kioupis, K. Maroulis, in Proceeding of the International 8th Conference Pipeline Rehabilitation and Maintenance 2006 (Turkey) (Istanbul, Turkey, 2006)

  8. Y. Hosokawa, F. Kajiyama, Y. Nakamura, in Proceeding of the International Conference 23rd World Gas 2006 (Holland) (Amsterdam, Holland, 2006 June 5–9), p. 641

  9. L.V. Nielsen, in Proceeding of the International Conference NACE Corrosion 2005 (Houston TX) (NACE Corrosion, New Houston, TX, USA, 2005) pn. 05788

  10. G.C. Christoforidis, D.P. Labridis, P.S. Dokopoulos, Electr. Power Syst. Res. 66, 2 (2003). https://doi.org/10.1016/S0378-7796(03)00018-X

    Article  Google Scholar 

  11. A. Brenna, L. Lazzari, M. Pedeferri, M. Ormellese, La Metall. Italiana 6, 29–34 (2014)

    Google Scholar 

  12. Q. Ding, Y. Fan, Int. J. Corros. 2016 (2016) ID.561392. https://doi.org/10.1155/2016/5615392

  13. I. Ibrahim, B. Tribollet, H. Takenouti et al., J. Braz. Chem. Soc. 26, 1 (2015). https://doi.org/10.5935/0103-5053.20140246

    Google Scholar 

  14. Y. Yang, S. Wang, C. Wen, Int. J. Electrochem. Sci. 11, 8 (2016). https://doi.org/10.20964/2016.08.64

    Google Scholar 

  15. NACE SP0177N, Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems (NACE International Practice, Houston, 2007)

  16. Multiphysics C., Comsol Reference Guide, Comsol Multiph ed. (Comsol Multiphysics, 2012) pn. CM020005

  17. E. Gongadze, S. Petersen, U. Beck, et al., in Proceeding of the International Conference Comsol 2009 (Italy) (Milan, Italy, 2009)

  18. Y. Hosokawa, F. Kajiyama, Y. Nakamura, in Proceeding of the International Conference NACE Corrosion 2002 (USA) (Denver, Colorado, USA, 2002 April 7–11), no. 51300-02111SG

  19. G. Wakelin, R.A. Gummow, S.M. Segall, in Proceeding of the International Conference NACE Corrosion 1998 (USA) (Houston, USA, 1998), pn. 98565

  20. P. Nichols, B. Holtsbaum, K. Parker, D.A. Schramm, S.R. Zurbuchen, S. Nelson, D. Mayfield, in CP3-Cathodic Protection, ed. by NACE (Technologist Course Manual, Houston, 2008)

  21. R. Ludwig, G. Leuenberger, S. Makarov, D. Apelian, J. Nondestruct. Eval. 21, 1 (2002). https://doi.org/10.1023/A:1019928709156

    Article  Google Scholar 

  22. P. Kofstad, T. Norby, Defects and Transport in Crystalline Solids (Advanced level course, Department of Chemistry, University of OSLO, Norway, 2007)

    Google Scholar 

  23. BioLogic, EC-Lab., ed. BioiLogic Sience Instruments (V.10.1x. 2011)

  24. E. Muehlenkamp, M. Koretsky, J. Westall, in Proceeding of the International Conference Corrosion 2005 (Corrosion June 2005), pp. 519–533

  25. K.B. Deshpande, Corros. Sci. 52, 10 (2010). https://doi.org/10.1016/j.corsci.2010.06.031

    Google Scholar 

  26. M. Freda, A. Giannetti L. Lattanzi, S. Luperi, in Proceeding of the International Conference Excerpt from the proceeding Comsol 2013 (Netherlands) (Rotterdam, Netherlands, 2013)

  27. E.B. Muehlenkamp, Electrochemical Modeling of Cathodic Protection Systems Applied to Reinforced Concrete Structures (Chemical Engineering University, Corvallis, 2005)

    Google Scholar 

  28. M.I. Abdulsalam, H.W. Pickering, J. Electrochem. Soc. 145, 7 (1998). https://doi.org/10.1149/1.1838632

    Article  Google Scholar 

  29. K.B. Deshpande, Corros. Sci. (2012). https://doi.org/10.1016/j.corsci.2012.05.013

    Google Scholar 

  30. F. Babaghayou, B. Zegnini, T. Seghier, in Proceeding of the 2016 International Conference on Electrical Sciences and Technologies in Maghreb, IEEE (Marrakech, Morocco, 26–28 Oct. 2016), pp. 1–6, n 17258979. https://doi.org/10.1109/cistem.2016.8066812

Download references

Acknowledgements

We would like to thank the Laboratory of Process Engineering Department and Laboratory of Mechanics, Amar Telidji University of Laghouat, Algeria and ENS (Higher Normal School of Laghouat) for EC-LAB. The authors thank Professor Teguar Madjid, Research Laboratory of Electrical Engineering, National Polytechnic, El-Harrach, Algeria, for the COMSOL code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatiha Babaghayou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaghayou, F., Zegnini, B. & Seghier, T. Experimental and Numerical Investigations of Effect of Alternating Current Interference Corrosion on Neighboring Pipelines. Trans. Electr. Electron. Mater. 19, 134–145 (2018). https://doi.org/10.1007/s42341-018-0022-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0022-z

Keywords

Navigation