Skip to main content
Log in

Advancement of CMOS Transimpedance Amplifier for Optical Receiver

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Transimpedance amplifier (TIA) is an essential component of optical receivers, and this type of amplifier converts the photocurrent to a voltage signal. The overall performance of the optical receiver greatly depends on the performance of this component. Low-power, low-noise, and compact TIA has been realized in current development in CMOS technology. The high demands of an optical receiver has led to the optimization and development of the TIA designed specifications. However, the conventional CMOS TIA design is limited mainly because of its dependency on input node capacitance. In this article, the advancement of TIAs in data communication and instrumentation based on different design architectures and performances is discussed. This review will serve as a comparative study and reference for designing fully integrated CMOS TIA for future optical receivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Marufuzzaman, M.B.I. Reaz, L.S. Yeng, L.F. Rahman, T.I. Badal, Design of low-cost transimpedance amplifer for optical receiver. Trans. Electr. Electron. Mater. 19(1), 7–13 (2018). https://doi.org/10.1007/s42341-018-0008-x

    Article  Google Scholar 

  2. M.A.S. Bhuiyan, M.B.I. Reaz, T.I. Badal, M.A. Mukit, N. Kamal, Design of an active inductor-based T/R switch in 0.13 μm CMOS technology for 2.4 GHz RF transceivers. Trans. Electr. Electron. Mater. 17, 261–269 (2016). https://doi.org/10.4313/teem.2016.17.5.261

    Article  Google Scholar 

  3. L.F. Rahman, M.B.I. Reaz, M. Marufuzzaman, M.B. Mashur, M.T.I. Badal, Evaluation of low power and high speed CMOS current comparators. Trans. Electr. Electron. Mater. 17(6), 317–328 (2016). https://doi.org/10.4313/TEEM.2016.17.6.317

    Article  Google Scholar 

  4. M.A.S. Bhuiyan, Y. Zijie, J.S. Yu, M.B.I. Reaz, N. Kamal, T.G. Chang, Active inductor based fully integrated CMOS transmit/receive switch for 2.4 GHz RF transceiver. Anais da Academia Brasileira de Ciências 88, 1089–1098 (2016). https://doi.org/10.1590/0001-3765201620150123

    Article  Google Scholar 

  5. J.M. García del Pozo, W.A. Serdijn, A. Otín, S. Celma, 2.5 Gb/s CMOS preamplifier for low-cost fiber-optic receivers. Analog. Integr. Circuits Process. 66, 363–370 (2011). https://doi.org/10.1007/2Fs10470-010-9526-0

    Article  Google Scholar 

  6. S. Kudszus, A. Shahani, S. Pavan, D.K. Shaeffer, and M. Tarsia, A 46-GHz distributed transimpedance amplifier using SiGe bipolar technology, in IEEE international MTT-S in Microwave Symposium Digest (2003), pp. 1387–1390. https://doi.org/10.1109/mwsym.2003.1212630

  7. H. Zheng, R. Ma, M. Liu, A 77-dB dynamic range low-power variable-gain transimpedance amplifier for linear LADAR. IEEE Trans. Circuits Syst. II Express Briefs 65(2), 171–175 (2018). https://doi.org/10.1109/tcsii.2017.2684822

    Article  Google Scholar 

  8. M.A.S. Bhuiyan, M.B.I. Reaz, Shunt-feedback transimpedance amplifier in 0.18 μm CMOS technology, in 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA) (2013), pp. 687–690. https://doi.org/10.1109/IMSNA.2013.6743369

  9. T. Takemoto, H. Yamashita, T. Yazaki, N. Chujo, Y. Lee, Y. Matsuoka, A 25-to-28 Gb/s high-sensitivity (9.7 dBm) 65 nm CMOS optical receiver for board-to-board interconnects. IEEE J. Solid-State Circuits 49, 2259–2276 (2014). https://doi.org/10.1109/2Fjssc.2014.2349976

    Article  Google Scholar 

  10. S.M. Rezaul Hasan, Design of a low-power 3.5 GHz broad-band CMOS transimpedance amplifier for optical transceivers. IEEE Trans. Circuits Syst. 52, 1061–1072 (2005). https://doi.org/10.1109/tcsi.2005.849101

    Article  Google Scholar 

  11. U. Alvarado, G. Bistué, I. Adin, Low Power RF Circuit Design in Standard CMOS Technology (Springer, Berlin, 2011), p. 104. https://doi.org/10.1007/978-3-642-22987-9

    Google Scholar 

  12. Z. Lu, K.S. Yeo, W.M. Lim, M.A. Do, C.C. Boon, Design of a CMOS broadband transimpedance amplifier with active feedback. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18, 461–472 (2010). https://doi.org/10.1109/tvlsi.2008.2012262

    Article  Google Scholar 

  13. Q. Gao, S. Xie, L. Mao, S. Wu, Y. Gu, H. Li, Q. Song, A single-to-differential broadband transimpedance amplifier for 12.5 Gb/s optical links. IEEE J. Solid-State Circuits 14, 2 (2017). https://doi.org/10.1587/elex.13.20161153

    Google Scholar 

  14. H.-L. Chen, C.-H. Chen, W.-B. Yang, J.-S. Chiang, Inductorless CMOS receiver front-end circuits for 10-Gb/s optical communications. Tamkang J. Sci. Eng. 12, 449–458 (2009)

    Google Scholar 

  15. J. Charlamov, R. Navickas, Design of CMOS differential transimpedance amplifier. Elektron. Elektrotech. 21, 37–41 (2015). https://doi.org/10.5755/j01.eee.21.1.4548

    Google Scholar 

  16. Y. Fei, Low-voltage CMOS current-mode preamplifier: analysis and design. IEEE Trans. Circuits Syst. I Regul. Pap. 53, 26–39 (2006). https://doi.org/10.1109/tcsi.2005.854414

    Article  Google Scholar 

  17. O. Momeni, H. Hashemi, E. Afshari, A 10 Gb/s inductorless transimpedance amplifier. IEEE Trans. Circuits Syst. II Express Briefs 57, 926–930 (2010). https://doi.org/10.1109/tcsii.2010.2087971

    Article  Google Scholar 

  18. A. Trabelsi, M. Boukadoum, Comparison of two CMOS front-end transimpedance amplifiers for optical biosensors. IEEE Sens. J. 13, 657–663 (2013). https://doi.org/10.1109/jsen.2012.2225141

    Article  Google Scholar 

  19. W. Xu, D.L. Mathine, J.K. Barton, High-gain differential CMOS transimpedance amplifier with on-chip buried double junction photodiode. Electron. Lett. 42, 803–805 (2006). https://doi.org/10.1049/el:20061560

    Article  Google Scholar 

  20. P. Wright, K.B. Ozanyan, S.J. Carey, H. McCann, Design of high-performance photodiode receivers for optical tomography. IEEE Sens. J. 5, 281–288 (2005). https://doi.org/10.1109/jsen.2004.841869

    Article  Google Scholar 

  21. M. Li, B. Hayes-Gill, I. Harrison, 6 GHz transimpedance amplifier for optical sensing system in low-cost 0.35 µm CMOS. Electron. Lett. 42, 1278–1279 (2006). https://doi.org/10.1049/el:20062961

    Article  Google Scholar 

  22. R. Yun, V.J. Koomson, A novel CMOS frequency-mixing transimpedance amplifier for frequency domain near infrared spectroscopy. IEEE Trans. Circuits Syst. I Regul. Pap. 60, 84–94 (2013). https://doi.org/10.1109/biocas.2010.5709615

    Article  Google Scholar 

  23. F. Aznar, W. Gaberl, H. Zimmermann, A 0.18 μm CMOS transimpedance amplifier with 26 dB dynamic range at 2.5 Gb/s. Microelectron. J. 42, 1136–1142 (2011). https://doi.org/10.1016/j.mejo.2011.06.005

    Article  Google Scholar 

  24. Y.H. Chang, Y.C. Chiang, C.Y. Yang, A 42.15–68.35 dBΩ tunable gain transimpedance amplifier using 0.18-μm CMOS process. Microw. Opt. Technol. Lett. 57, 830–832 (2015). https://doi.org/10.1002/mop.28969

    Article  Google Scholar 

  25. E. Säckinger, Broadband Circuits for Optical Fiber Communication (Wiley, New York, 2005). https://doi.org/10.1002/0471726400

    Book  Google Scholar 

  26. H. Zquez, F. Dualibe, G. Popov, A 0.5 V fully differential transimpedance amplifier in 65-nm CMOS technology, in IEEE International Midwest Symposium on Circuits and Systems (2017). https://doi.org/10.1109/mwscas.2017.8053035.s

  27. C.-H. Lu, W.-Z. Chen, Bandwidth enhancement techniques for transimpedance amplifier in CMOS technologies, in Proceedings of the 27th European Solid-State Circuits Conference (2001), pp. 174–177. https://doi.org/10.1109/icm.2013.6734945

  28. J. Jun-De, S.S.H. Hsu, A 40-Gb/s transimpedance amplifier in 0.18-μm CMOS technology. IEEE J. Solid State Circuits 43, 1449–1457 (2008)

    Article  Google Scholar 

  29. Y. Zhang, Design of CMOS Front-End Receivers for Optical Wireless Communication (Tufts University, Medford, 2008)

    Google Scholar 

  30. C.A. Holt, Electronic Circuits: Digital and Analog (Wiley, New York, 1978)

    Google Scholar 

  31. P. Muller, Y. Leblebici, Transimpedance Amplifier Design: CMOS Multichannel Single-Chip Receivers for Multi-gigabit Optical Data Communications (Springer, Dordrecht, 2007), pp. 73–93. https://doi.org/10.1007/978-1-4020-5912-4

    Google Scholar 

  32. Z. Yan, P.-I. Mak, R.P. Martins, Two stage operational amplifiers: power and area efficient frequency compensation for driving a wide range of capacitive load. IEEE Circuits Syst. Mag. 11, 26–42 (2011). https://doi.org/10.1109/mcas.2010.939783

    Google Scholar 

  33. B. Razavi, A 622 Mb/s 4.5 pA/spl radic/Hz CMOS transimpedance amplifier for optical receiver front-end, in IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers (2000), pp. 162–163. https://doi.org/10.1109/isscc.2000.839732

  34. E. Sackinger, W. Guggenbuhl, A high-swing, high-impedance MOS cascode circuit. IEEE J. Solid-State Circuits 25, 289–298 (1990). https://doi.org/10.1109/4.50316

    Article  Google Scholar 

  35. B. Chen, RFIC Applications with CMOS Technology (City University of New York, Ann Arbor, 2006)

    Google Scholar 

  36. J.H. Chuah, D. Holburn, Design of low-noise CMOS transimpedance amplifier. Microelectron. Int. 30, 115–124 (2013). https://doi.org/10.1108/mi-11-2012-0080

    Article  Google Scholar 

  37. M. Atef, H. Zimmermann, Low-power 10 Gb/s inductorless inverter based common-drain active feedback transimpedance amplifier in 40 nm CMOS. Analog Integr. Circuits Process 76, 367–376 (2013). https://doi.org/10.1007/s10470-013-0117-8

    Article  Google Scholar 

  38. P. Muller, Y. Leblebici, CMOS Multichannel Single-Chip Receivers for Multi-gigabit Optical Data Communications (Springer, Berlin, 2007). https://doi.org/10.1007/978-1-4020-5912-4

    Book  Google Scholar 

  39. A. Tanabe et al., A single-chip 2.4-Gb/s CMOS optical receiver IC with low substrate cross-talk preamplifier. IEEE J. Solid-State Circuits 33, 12 (1998). https://doi.org/10.1109/4.735558

    Article  Google Scholar 

  40. M. Azadeh, Optical receiver design, in Fiber Optics Engineering, ed. by B. Mukherjee (Springer, Berlin, 2009), pp. 235–264

    Chapter  Google Scholar 

  41. C. Kromer et al., A low-power 20-GHz 52-dBΩ transimpedance amplifier in 80-nm CMOS. IEEE J. Solid-State Circuits 39, 885–894 (2004). https://doi.org/10.1109/jssc.2004.827807

    Article  Google Scholar 

  42. D. Li, G. Minoia, M. Repossi, D. Baldi, E. Temporiti, A. Mazzanti et al., A low-noise design technique for high-speed CMOS optical receivers. IEEE J. Solid-State Circuits 49, 1437–1447 (2014)

    Article  Google Scholar 

  43. S. Shahdoost, A. Medi, N. Saniei, Design of low-noise transimpedance amplifiers with capacitive feedback. Analog Integr. Circuits Process. 86, 233–240 (2016). https://doi.org/10.1007/s10470-015-0669-x

    Article  Google Scholar 

  44. D. Chen, K.S. Yeo, X. Shi, M.A. Do, C.C. Boon, W.M. Lim, “Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21, 1516–1525 (2013). https://doi.org/10.1109/tvlsi.2012.2211086

    Article  Google Scholar 

  45. H. Escid, M. Attari, M. Aitaidir, W. Mechti, CMOS optical sensor for an integrated transimpedance circuit. Int. J. Smart Sens. Intell. Syst. 4, 467–481 (2011). https://doi.org/10.21307/ijssis-2017-451

    Google Scholar 

  46. T.-H. Ngo, T.-W. Lee, H.-H. Park, 4.1 mW 50 dBΩ 10 Gbps transimpedance amplifier for optical receivers in 0.13 μm CMOS. Microw. Opt. Technol. Lett. 53, 448–451 (2011). https://doi.org/10.1002/mop.25741

    Article  Google Scholar 

  47. J. Sangirov, I.A. Ukaegbu, T.-W. Lee, M.H. Cho, H.-H. Park, 10 Gbps transimpedance amplifier-receiver for optical interconnects. J. Opt. Soc. Korea 17, 44–49 (2013). https://doi.org/10.3807/josk.2013.17.1.044

    Article  Google Scholar 

  48. D. Abd-elrahman, M. Atef, M. Abbas, M. Abdelgawad, Low power transimpedance amplifier using current reuse with dual feedback, in IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (2015), pp. 244–247

  49. S.M.R. Hasan, A 0.8 V 40 Gb/s novel CMOS regulated cascode trans-impedance amplifier for optical sensing a lications. J. Signal Process. Syst. 72, 63–68 (2013). https://doi.org/10.1007/s11265-012-0707-1

    Article  Google Scholar 

  50. L. Chih-Fan, L. Shen-Iuan, 40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS. IEEE J. Solid-State Circuits 43, 642–655 (2008). https://doi.org/10.1109/jssc.2007.916626

    Article  Google Scholar 

  51. S. Salhi, A. Slimane, H. Escid, S.A. Tedjini, Design and analysis of CMOS RCG transimpedance amplifier based on elliptic filter approach. IET Circuits Devices Syst. 12, 497–504 (2018). https://doi.org/10.1049/iet-cds.2017.0449

    Article  Google Scholar 

  52. K. Joohwa, J.F. Buckwalter, Bandwidth enhancement with low group-delay variation for a 40-Gb/s transimpedance amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 57, 1964–1972 (2010). https://doi.org/10.1109/tcsi.2010.2041502

    Article  Google Scholar 

  53. V. Kushwah, A. Quazi, N. Muchhal, Design of CMOS based transimpedance amplifier for bandwidth enhancement with large gain. Int. J. Comput. A 1, 138 (2016). https://doi.org/10.5120/ijca2016909067

    Google Scholar 

  54. E. Kamrani, F. Lesage, M. Sawan, Low-noise, high-gain transimpedanee amplifier integrated with SiAPD for low-intensity Ncar-infrared light detection. IEEE Sens. J. 14, 258–269 (2014). https://doi.org/10.1109/jsen.2013.2282624

    Article  Google Scholar 

  55. A. Chaddad, C. Tanougast, Low-noise transimpedance amplifier dedicated to biomedical devices: near infrared spectroscopy system, in International Conference on Control, Decision and Information Technologies (CoDIT) (2014). https://doi.org/10.1109/codit.2014.6996963

  56. M.A.S. Bhuiyan, K.A. Tarumaraja, M.B.I. Reaz, F.H. Hashim, S.H.M. Ali, Low noise low power transimpedance amplifier in 0.18 µM CMOS technology. J. Theor. Appl. Inf. Technol. 62, 16–20 (2014)

    Google Scholar 

  57. H. Jiaping, K. Yong-Bin, J. Ayers, A low power 100 M ohm CMOS front-end transimpedance amplifier for biosensing applications, in 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (2010), pp. 541–544. https://doi.org/10.1109/mwscas.2010.5548884

  58. H.M. Lavasani, P. Wanling, B. Harrington, R. Abdolvand, F. Ayazi, A 76 dBohm 1.7 GHz 0.18 μm CMOS tunable TIA using broadband current pre-amplifier for high frequency lateral MEMS oscillators. IEEE J. Solid-State Circuits 46, 224–235 (2011). https://doi.org/10.1109/jssc.2010.2085890

    Article  Google Scholar 

  59. E. Kamrani, F. Lesage, M. Sawan, Low-noise, high-gain TIA integrated with CMOS APD for low-intensity light detection in near-infrared spectroscopy. IEEE Sens. J. 15, 1 (2013). https://doi.org/10.1109/jsen.2013.2282624

    Google Scholar 

  60. R. Yun, V.M. Joyner, A monolithically integrated phase-sensitive optical sensor for frequency-domain NIR spectroscopy. IEEE Sens. J. 10, 1234–1242 (2010). https://doi.org/10.1109/jsen.2010.2044502

    Article  Google Scholar 

  61. J. Salvia, P. Lajevardi, M. Hekmat, B. Murmann, A 56 MΩ CMOS TIA for MEMS applications, in IEEE Custom Integrated Circuits Conference (2009), pp. 199–202. https://doi.org/10.1109/cicc.2009.5280878

  62. P. Sung Min, L. Jaeseo, Y. Hoi-Jun, 1-Gb/s 80-dBohm fully differential CMOS transimpedance amplifier in multichip on oxide technology for optical interconnects. IEEE J. Solid-State Circuits 39, 971–974 (2004)

    Article  Google Scholar 

  63. J.H. Chuah, D. Holburn, Design of low-noise high-gain CMOS transimpedance amplifier for intelligent sensing of secondary electrons. IEEE Sens. J. 15, 5997–6004 (2015). https://doi.org/10.1109/jsen.2015.2452934

    Article  Google Scholar 

  64. A. Atef, M. Atef, M. Abbas, E. E. M. Khaled, High-sensitivity regulated inverter cascode transimpedance amplifier for near infrared spectroscopy, in Fourth International Japan–Egypt Conference on Electronics, Communications and Computers (JEC-ECC) (2016), pp. 99–102. https://doi.org/10.1109/jec-ecc.2016.7518977

  65. J. Han, B. Choi, M. Seo, J. Yun, D. Lee, T. Kim et al., A 20-Gb/s transformer-based current-mode optical receiver in 0.13-CMOS. IEEE Trans. Circuits Syst. II Express Briefs 57, 348–352 (2010). https://doi.org/10.1109/tcsii.2010.2047309

    Article  Google Scholar 

  66. W.-Z. Chen, Y.-L. Cheng, D.-S. Lin, A 1.8-V 10-Gb/s fully integrated CMOS optical receiver analog front-end. IEEE J. Solid-State Circuits 40, 1388–1396 (2005). https://doi.org/10.1109/esscir.2004.1356668

    Article  Google Scholar 

  67. C.-H. Wu, C.-H. Lee, W.-S. Chen, S.-I. Liu, CMOS wideband amplifiers using multiple inductive-series peaking technique. IEEE J. Solid-State Circuits 40, 548–552 (2005). https://doi.org/10.1109/jssc.2004.840979

    Article  Google Scholar 

  68. B. Razavi, Prospects of CMOS technology for high-speed optical communication circuits. IEEE J. Solid-State Circuits 37, 1135–1145 (2002). https://doi.org/10.1109/jssc.2002.801195

    Article  Google Scholar 

  69. Y.-H. Oh, S.-G. Lee, An inductance enhancement technique and its application to a shunt-peaked 2.5 Gb/s transimpedance amplifier design. IEEE Trans. Circuits Syst. II Express Briefs 51, 624–628 (2004). https://doi.org/10.1109/tcsii.2004.836883

    Article  Google Scholar 

  70. C. Talarico, G. Agrawal, J. W. Roveda, A 60 dBO 2.9 GHz 0.18 µm CMOS transimpedance amplifier for a fiber optic receiver application, in 57th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (2014), pp. 181–184. https://doi.org/10.1109/prime.2016.7519513

  71. Z. Lu, K.S. Yeo, J. Ma, M.A. Do, W.M. Lim, X. Chen, Broad-band design techniques for transimpedance amplifiers. IEEE Trans. Circuits Syst. I Regul. Pap. 54, 590–600 (2007). https://doi.org/10.1109/tcsi.2006.887610

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by University Kebangsaan Malaysia and MOSTI. Project Code: AP-2017-008/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Torikul Islam Badal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badal, M.T.I., Reaz, M.B.I., Yeng, L.S. et al. Advancement of CMOS Transimpedance Amplifier for Optical Receiver. Trans. Electr. Electron. Mater. 20, 73–84 (2019). https://doi.org/10.1007/s42341-018-00092-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-00092-5

Keywords

Navigation