Skip to main content
Log in

Effect of Low Calcite Addition on Sulfate Resisting (SR) Portland Cements: Hydration Kinetics at Early Age and Durability Performance After 2 Years

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The limestone addition to sulfate resisting Portland (SR) cement is often used to adjust artificially the amount of aluminate (C3A) in order to keep it less than 3%. However, CaCO3 addition is well known to induce thaumasite formation (CaCO3·CaSO4·CaSiO3·15H2O) in Portland cement during external sulfate attack. This compound decreases the concrete durability because of its high volume expansion. In this work we studied the addition of limestone within low amounts (≤ 6.21%) into SR Portland cement. Thus, three commercial samples (A, B and C) containing limestone addition were analyzed by XRF technique and the results were used to estimate the mineralogical composition by Bogue method. XR diffraction coupled to Rietveld algorithm was then performed to determine the real amounts of mineralogical phases. The results were as following: C3S contents were 49.70, 45.30 and 50.60%; C3A: 1.40, 1.10 and 2.5% and calcium carbonate addition 6.21, 2.10 and 2.10%, respectively. The effect of calcium carbonate on hydration kinetics at early age has been studied and discussed. Durability of studied cement samples was followed during 2 years into Na2SO4 and MgSO4 solutions (10 g/L). Thaumasite formation was observed only in cement mortars corresponding to the sample 6.21% CaCO3, C3S (49.70%) and C3A (1.4%) at 22 °C, this result is different from earlier works in which thaumasite precipitates at low temperature (5 °C) and high CaCO3 contents (> 15%). This result proved the SR Portland cement must contain very low limestone addition, less than 6% and much lower if used at 5 °C or below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

C:

CaO

S:

SiO2

A:

Al2O3

F:

Fe2O3

N:

Na2O

K:

K2O

\( \bar{S} \) :

SO3

M:

MgO

H:

H2O

LOI:

Loss in ignition

References

  1. En N (2001) 197–1-Ciment—Partie 1: composition, spécifications et critères de conformité des ciments courants. AFNOR, Paris

    Google Scholar 

  2. Gollop R, Taylor H (1995) Microstructural and microanalytical studies of sulfate attack III Sulfate-resisting portland cement: Reactions with sodium and magnesium sulfate solutions. Cem Concr Res 25(7):1581–1590

    Article  CAS  Google Scholar 

  3. IslemLabidi H (2017) Adel Megriche: feasibility of efficient RS Portland cement from An optimization combination of raw materials. J Tunis Chem Soc 19:294–300

    Google Scholar 

  4. Sorrentino F (2011) Chemistry and engineering of the production process: state of the art. Cem Concr Res 41(7):616–623

    Article  CAS  Google Scholar 

  5. Chatterjee AK (2011) Chemistry and engineering of the clinkerization process—Incremental advances and lack of breakthroughs. Cem Concr Res 41(7):624–641

    Article  CAS  Google Scholar 

  6. Hawkins P, Tennis P, Detwiler R (2003) The Use of Limestone in Portland Cement: a State-of-the-Art Review. Portland Cement Association, Skokie, Illinois, USA

    Google Scholar 

  7. Bonavetti V, Donza H, Rahhal V, Irassar E (2000) Influence of initial curing on the properties of concrete containing limestone blended cement. Cem Concr Res 30(5):703–708

    Article  CAS  Google Scholar 

  8. Kakali G, Tsivilis S, Aggeli E, Bati M (2000) Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem Concr Res 30(7):1073–1077

    Article  CAS  Google Scholar 

  9.  Schmidt T (2007) Sulfate attack and the role of internal carbonate on the formation of thaumasite. Thesis EPFL, Lausanne, Switzerland

    Google Scholar 

  10. Schmidt T, Lothenbach B, Romer M, Neuenschwander J, Scrivener K (2009) Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cem Concr Res 39(12):1111–1121

    Article  CAS  Google Scholar 

  11. Collepardi M (1999) Thaumasite formation and deterioration in historic buildings. Cement Concr Compos 21(2):147–154

    Article  CAS  Google Scholar 

  12. Juel I, Herfort D, Gollop R, Konnerup-Madsen J, Jakobsen HJ, Skibsted J (2003) A thermodynamic model for predicting the stability of thaumasite. Cem Concr Compos 25(8):867–872

    Article  CAS  Google Scholar 

  13. Crammond N (2002) The occurrence of thaumasite in modern construction—a review. Cem Concr Compos 24(3–4):393–402

    Article  CAS  Google Scholar 

  14. Tsivilis S, Sotiriadis K, Skaropoulou A (2007) Thaumasite form of sulfate attack (TSA) in limestone cement pastes. J Eur Ceram Soc 27(2):1711–1714

    Article  CAS  Google Scholar 

  15. Irassar E, Gonzalez M, Rahhal V (2000) Sulphate resistance of type V cements with limestone filler and natural pozzolana. Cem Concr Compos 22(5):361–368

    Article  CAS  Google Scholar 

  16. Al-Amoudi OSB (2002) Attack on plain and blended cements exposed to aggressive sulfate environments. Cem Concr Compos 24(3):305–316

    Article  Google Scholar 

  17. Islem Labidi SB, Houcine T, Adel M (2018) Critical research study of quantification methods of mineralogical phases in cementitious materials. J Aust Ceram Soc 34:1541–1547

    Google Scholar 

  18. EN N (2006) 196-1, Méthodes d’essais des ciments-Partie 1: détermination des résistances mécaniques. French Standard 2006

  19. Khelifa MR (2009) Effet de l’attaque sulfatique externe sur la durabilité des bétons autoplaçants Thèse de Doctorat, U. de Constantine et U. d’Orléans

    Google Scholar 

  20. Ismail S, Sashidhar C, Kumar DP (2015) Effect of sulphates in the presence of water on the strength characteristics of blended cement. Int Res J Eng Technol 2(5):1228–1234

    Google Scholar 

  21. Mounanga P (2003) Experimental study of the behavior of cement pastes at very young age: hydration, shrinkage, thermophysical properties. Adv Cem Res 16:95–103

    Article  Google Scholar 

  22. Mounanga P (2003) Etude expérimentale du comportement de pâtes de ciment au très jeune âge: hydratation, retraits, propriétés thermophysiques.Thèse de Doctorat, Nantes

  23. Kocaba V (2009) Development and evaluation of methods to follow microstructural development of cementitious systems including slags. Thesis, EPFL, Lausanne

    Google Scholar 

  24. Trezza M, Lavat A (2001) Analysis of the system 3CaO· Al2O3–CaSO4 2H2O–CaCO3–H2O by FT–IR spectroscopy. Cem Concr Res 31(6):869–872

    Article  CAS  Google Scholar 

  25. El-Roudi A, Balboul BA, Abdelzaher M (2015) Influence of limestone on physico-chemical properties of white portland cement pastes. Int J 3(6):210–221

    CAS  Google Scholar 

  26. Fernández-Carrasco L,  Torréns-Martín D,  Morales LM, Martinez-Ramírez S (2012) Infrared spectroscopy in the analysis of building and construction materials. In: Theophanides T (ed) Infrared Spectroscopy — Materials Science, Engineering and Technology, INTECH, Rijeka, Croatia, pp. 369–382

    Google Scholar 

  27. Horgnies M, Chen J, Bouillon C (2013) Overview about the use of Fourier transform infrared spectroscopy to study cementitious materials. WIT Trans Eng Sci 77:251–262

    Article  CAS  Google Scholar 

  28. Collier NC (2016) Transition and decomposition temperatures of cement phases—a collection of thermal analysis data. Ceram Silik 60(4):338–343

    Article  CAS  Google Scholar 

  29. Gabrovšek R, Vuk T, Kaučič V (2006) Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis. Acta Chim Slov 53:159–165

    Google Scholar 

  30. Boualleg S, Bencheikh M, Belagraa L, Daoudi A, Chikouche MA (2017) The combined effect of the initial cure and the type of cement on the natural carbonation, the portlandite content, and nonevaporable water in blended cement. Adv Mater Sci Eng 2017:17

    Article  CAS  Google Scholar 

  31. Bullard JW, Jennings HM, Livingston RA, Nonat A, Scherer GW, Schweitzer JS, Scrivener KL, Thomas JJ (2011) Mechanisms of cement hydration. Cem Concr Res 41(12):1208–1223

    Article  CAS  Google Scholar 

  32. Santhanam M, Cohen MD, Olek J (2003) Mechanism of sulfate attack: a fresh look: part 2. Proposed mechanisms. Cem Concr Res 33(3):341–346

    Article  CAS  Google Scholar 

  33. Xiong C, Jiang L, Song Z, Liu R, You L, Chu H (2014) Influence of cation type on deterioration process of cement paste in sulfate environment. Constr Build Mater 71:158–166

    Article  Google Scholar 

  34. Shanahan N, Zayed A (2007) Cement composition and sulfate attack: part I. Cem Concr Res 37(4):618–623

    Article  CAS  Google Scholar 

  35. Cao H, Bucea L, Ray A, Yozghatlian S (1997) The effect of cement composition and pH of environment on sulfate resistance of Portland cements and blended cements. Cem Concr Compos 19(2):161–171

    Article  CAS  Google Scholar 

  36. Taylor H (1990) Proposed mechanisms. Academic Press, London

    Google Scholar 

  37. Loukili A (1996) Etude du retrait et du fluage de Bétons à Ultra-Hautes Performances. Thèse de Doctorat, Université de  Nantes

  38. Deboucha W, Leklou N, Khelidj A, Oudjit MN (2017) Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): methodology of calculating the degree of hydration. Constr Build Mater 146:687–701

    Article  CAS  Google Scholar 

  39. Powers TC, Brownyard TL (1943) Studies of the physical properties of hardened Portland cement paste. J Proc 1946:101–132

    Google Scholar 

  40. Yu Q, Sawayama K, Sugita S, Shoya M, Isojima Y (1999) The reaction between rice husk ash and Ca (OH) 2 solution and the nature of its product. Cem Concr Res 29(1):37–43

    Article  CAS  Google Scholar 

  41. Neville A (2004) The confused world of sulfate attack on concrete. Cem Concr Res 34(8):1275–1296

    Article  CAS  Google Scholar 

  42. Ramachandran VS, Paroli RM, Beaudoin JJ, Delgado AH (2002)  Handbook of Thermal Analysis of Construction Materials, Noyes Publications, New York, USA

    Google Scholar 

  43. Torres S, Sharp J, Swamy R, Lynsdale C, Huntley S (2003) Long term durability of Portland-limestone cement mortars exposed to magnesium sulfate attack. Cement Concr Compos 25(8):947–954

    Article  CAS  Google Scholar 

  44. Higgins D, Crammond N (2003) Resistance of concrete containing ggbs to the thaumasite form of sulfate attack. Cem Concr Compos 25(8):921–929

    Article  CAS  Google Scholar 

  45. Hartshorn S, Sharp J, Swamy R (2002) The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution. Cem Concr Compos 24(3):351–359

    Article  CAS  Google Scholar 

  46. Santhanam M, Cohen M, Olek J (2006) Differentiating seawater and groundwater sulfate attack in Portland cement mortars. Cem Concr Res 36(12):2132–2137

    Article  CAS  Google Scholar 

  47. Abdalkader A (2014) Thaumasite sulfate attack in cement mortars exposed to sulfate and chloride and implications to rebar corrosion. Thesis University of Sheffield, Sheffield

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islem Labidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labidi, I., Boughanmi, S., Khelidj, A. et al. Effect of Low Calcite Addition on Sulfate Resisting (SR) Portland Cements: Hydration Kinetics at Early Age and Durability Performance After 2 Years. Chemistry Africa 2, 401–414 (2019). https://doi.org/10.1007/s42250-019-00047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00047-0

Keywords

Navigation