Skip to main content

Advertisement

Log in

Use of Tunisian Opuntia ficus-indica Cladodes as a Low Cost Renewable Admixture in Cement Mortar Preparations

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The present study deals with the influence of Opuntia ficus-indica cladodes powder on the durability and the mechanical properties of Portland cement mortar, including setting time and compressive strength. A control specimen with ordinary Portland cement was made and in other specimens, cement was replaced with 1, 2.5 and 4% of Opuntia ficus-indica cladode’s powder by weight of cement. The obtained results showed that setting times decreased notably with the addition of Opuntia ficus-indica cladodes and that there is an enhancement of the mechanical strength and the resistance to acetic and hydrochloric 5% acid solution compared with the standard specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chandra S, Eklund L, Villarreal RR (1998) Use of cactus in mortars and concrete. Cement Concr Res 28:41–51. https://doi.org/10.1016/S0008-8846(97)00254-8

    Article  CAS  Google Scholar 

  2. Chindaprasirt P, Rukzon S (2008) Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr Build Mater 22:1601–1606. https://doi.org/10.1016/j.conbuildmat.2007.06.010

    Article  Google Scholar 

  3. Vaiciukyniene D, Vaitkevicius V, Kantautas A, Sasnauskas V (2012) Utilization of by-product waste silica in concrete-based materials. Mater Res 15:561–567. https://doi.org/10.1590/S1516-14392012005000082

    Article  CAS  Google Scholar 

  4. Barreca F, Fichera CR (2013) Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energ Buildings 62:507–513. https://doi.org/10.1016/j.enbuild.2013.03.040

    Article  Google Scholar 

  5. Khedari J, Suttisonk B, Pratinthong N, Hirunlabh J (2001) New lightweight composite construction materials with low thermal conductivity. Cement Concr Comp 23:65–70. https://doi.org/10.1016/S0958-9465(00)00072-X

    Article  CAS  Google Scholar 

  6. Mannan MA, Ganapathy C (2002) Engineering properties of concrete with oil palm shell as coarse aggregate. Constr Build Mater 16:29–34 (S0950-0618(01)00030-7)

    Article  Google Scholar 

  7. Chavez-Moreno CK, Tecante A, Casas A (2009) The Opuntia (Cactaceae) and Dactylopius (Hemiptera: Dactylopiidae) in Mexico: a historical perspective of use, interaction and distribution. Biodivers Conserv 18:3337–3355. https://doi.org/10.1007/s10531-009-9647-x

    Article  Google Scholar 

  8. Saenz C, Sepulveda E, Matsuhiro B (2004) Opuntia spp. mucilage’s: a functional component with industrial perspectives. J Arid Environ 57:275–290. https://doi.org/10.1016/S0140-1963(03)00106-X

    Article  Google Scholar 

  9. Le Houerou HN (1977) Plant sociology and ecology applied to grazing lands research, survey and management in the Mediterranean Basin. In: Krause W (ed) Application of vegetation science to grassland husbandry. Handbook of vegetation science, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1315-4_5

    Chapter  Google Scholar 

  10. Guevara-Arauza JC, de Jesús Ornelas-Paz J, Pimentel-González DJ et al (2012) Prebiotic effect of mucilage and pectic-derived oligosaccharides from nopal (Opuntia ficus-indica). Food Sci Biotechnol 21:997. https://doi.org/10.1007/s10068-012-0130-1

    Article  CAS  Google Scholar 

  11. Nefzaoui A, Salem HB, Salem LB (1995) Ewe-lambs feeding with cactus-based diets Effect of the type of nitrogen supplement. In: IVth International symposium on the nutrition of herbivores-satellite. Ruminant use of fodder resources in warm climate countries. Montpellier (France), pp 7–9

  12. Rodriguez-Garcia ME, de Lira C, Hernandez-Becerra E, Cornejo-Villegas MA, Palacios-Fonseca AJ, Rojas-Molina I, Reynoso R, Quintero LC, Del-Real A, Zepeda TA, Munoz-Torres C (2007) Physicochemical characterization of nopal pads (Opuntia ficus indica) and dry vacuum nopal powders as a function of the maturation. Plant Food Hum Nutr 62:107–112. https://doi.org/10.1007/s11130-007-0049-5

    Article  CAS  Google Scholar 

  13. Hernández Carrillo CG, Gómez-Cuaspud JA, Martínez Suarez CE (2017) Compositional, thermal and microstructural characterization of the Nopal (Opuntia ficus indica), for addition in commercial cement mixtures. J Phys Conf Ser 935:012045. https://doi.org/10.1088/1742-6596/935/1/012045

    Article  CAS  Google Scholar 

  14. Inglese P, Basile F, Schirra M (2002) Cactus pear fruit production. Cacti Biol Uses 10:163–183

    Google Scholar 

  15. Nefzaoui A, Ben Salem H (2000) Opuntia—a strategic fodder and efficient tool to combat desertification in the Wana region. FAO Int Cactus Pear Netw Newslett 2000:2–30

    Google Scholar 

  16. Nefzaoui A, Ben Salem H (2002) Forage, fodder, and animal nutrition. University of California Press, Berkeley

    Book  Google Scholar 

  17. Leon-Martinez FM, Cano-Barrita PFD, Lagunez-Rivera L, Medina-Torres L (2014) Study of nopal mucilage and marine brown algae extract as viscosity-enhancing admixtures for cement based materials. Constr Build Mater 53:190–202. https://doi.org/10.1016/j.conbuildmat.2013.11.068

    Article  Google Scholar 

  18. Hernández et al (2016) Influence of cactus mucilage and marine brown algae extract on the compressive strength and durability of concrete. Mater Constr 66(321):e074

    Article  CAS  Google Scholar 

  19. Martinez-Molina W, Torres-Acosta AA, Martinez-Pena GEI, Guzman EA, Mendoza-Perez IN (2015) Cement-based materials-enhanced durability from Opuntia ficus-indica mucilage additions. ACI Mater J 112(1):165–172. https://doi.org/10.14359/51687225

    Article  Google Scholar 

  20. Cárdenas et al (1998) On the possible role of Opuntia ficus-indica mucilage in lime mortar performance in the protection of historical buildings. JPACD 3:64–71

    Google Scholar 

  21. Chandra S, Flodin P (1989) Interaction of polymer with calcium hydroxide and calcium trisilicate. In: Ottawa Conference, pp 263–272

  22. León Martínez FM, de Cano Barrita PFJ, Lagunez Rivera L, Medina Torres L (2014) Study of nopal mucilage and marine brown algae extract as viscosity-enhancing admixtures for cement based materials. Constr Build Mater 53:190–202

    Article  Google Scholar 

  23. Horwitz W, AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemist International, Washington DC

  24. Marzouk W, Zarrougui R, Majdoub H (2017) High solubility of cellulose extracted from Tunisian date palm (phoenix dactylifera) in a new ionic liquid. Cellul Chem Technol 51:621–629

    CAS  Google Scholar 

  25. Denis C, Morancais M, Li M, Deniaud E, Gaudin P, Wielgosz-Collin G, Barnathan G, Jaouen P, Fleurence J (2010) Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem 119:913–917. https://doi.org/10.1016/j.foodchem.2009.07.047

    Article  CAS  Google Scholar 

  26. EN B 2005 196-1 (2005) Methods of testing cement. Determination of strength

  27. EN T 2000 196-3 (2000) Methods of testing cement—part 3: determination of setting times and soundness

  28. Martínez-Molina W, Torres-Acosta AA, Celis-Mendoza CE, Alonso-Guzman E (2015) Physical properties of cement-based paste and mortar with dehydrated cacti additions. Int J Archit Herit 9(4):443–452. https://doi.org/10.1080/15583058.2013.800919

    Article  Google Scholar 

  29. Zsivanovits G, MacDougall AJ, Smith AC, Ring SG (2004) Material properties of concentrated pectin networks. Carbohyd Res 339:1317–1322

    Article  CAS  Google Scholar 

  30. Dronnet VM, Renard CMGC, Axelos MAV, Thibault JF (1996) Characterisation and selectivity of divalent metal ions binding by citrus and sugar beet pectins. Carbohyd Polym 30:253–263. https://doi.org/10.1016/S0144-8617(96)00107-5

    Article  CAS  Google Scholar 

  31. Domozych DS, Sørensen I, Popper ZA, Ochs J, Andreas A, Fangel JU, Pielach A, Sacks C, Brechka H, Ruisi-Besares P, Willats WG, Rose JKC (2014) Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol 165(1):105–118. https://doi.org/10.1104/pp.114.236257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sedan D, Pagnoux C, Chotard T, Smith A, Lejolly D, Gloaguen V, Krausz P (2007) Effect of calcium rich and alkaline solutions on the chemical behaviour of hemp fibres. J Mater Sci 42:9336–9342. https://doi.org/10.1007/s10853-007-1903-4

    Article  CAS  Google Scholar 

  33. Paulon V, Dal Molin D, Monteiro P (2004) Statistical analysis of the effect of mineral admixtures on the strength of the interfacial transition zone. Interface Sci 12:399. https://doi.org/10.1023/B:INTS.0000042338.54460.02

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiraz El Azizi.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, C.E., Hammi, H., Chaouch, M.A. et al. Use of Tunisian Opuntia ficus-indica Cladodes as a Low Cost Renewable Admixture in Cement Mortar Preparations. Chemistry Africa 2, 135–142 (2019). https://doi.org/10.1007/s42250-019-00040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00040-7

Keywords

Navigation