Skip to main content
Log in

Characterization and Catalytic Activity of Mn(salen) Supported on a Silica/Clay-Mineral Composite: Influence of the Complex/Support Interaction on the Catalytic Efficiency

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

We investigated different strategies to prepare Mn(salen) complexes supported on a silica/clay-mineral composite. The silica/clay-mineral surfaces were modified by grafting aminosilane groups, then Mn(salen) complexes were either grafted through a cross-linker, or deposited on the surface through interactions between amino group and manganese center. Two additional strategies, based on hydrogen bonds and electrostatic interactions, were also considered for comparison. The resulting materials were characterized using IR in diffuse reflectance mode, thermogravimetric analysis and elemental analysis in order to determine the manganese content and to establish the nature of the interaction between Mn(salen) complexes and silica/clay-mineral material surface for the different preparation protocols. These catalysts, were used for cyclohexene oxidation by tert-Butyl hydroperoxide with the objective of correlating the nature of the interaction between the metallic complex and the support to the catalytic activity. They were also compared to similar systems prepared using fumed silica as support, evidencing the input of this silica/clay-mineral composite in the catalytic performances. The obtained materials exhibited differences in both reactivity and selectivity that can be related to the nature of the interaction between the metallic center and the oxide support. The highest conversions were observed when the Mn complexes were immobilized with rigidness on the support. Interestingly, the resulting materials exhibited a remarkable stability, as evidenced by the absence of leaching of Mn(salen) in the reaction batch, and hence an excellent reusability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang W, Loebach JL, Wilson SR, Jacobsen EN (1990) J Am Chem Soc 112:2801

    Article  CAS  Google Scholar 

  2. Irie R, Noda K, Ito Y, Matsumoto N, Katsuki T (1990) Tetrahedron Lett 31:7345

    Article  CAS  Google Scholar 

  3. Jacobsen EN, Zhang W, Güler ML (1991) J Am Chem Soc 113:6703

    Article  CAS  Google Scholar 

  4. Maity NC, Abdi SHR, Kureshy RI, Khan NH, Suresh E, Dangi GP, Bajaj HC (2011) J Catal 277:123

    Article  CAS  Google Scholar 

  5. Tan R, Yin D, Yu N, Jin Y, Zhao H, Yin D (2008) J Catal 255:287

    Article  CAS  Google Scholar 

  6. Garcia AM, Moreno V, Delgado SX, Ramírez AE, Vargas LA, Vicente MÁ, Gil A, Galeano LA (2016) J Mol Catal A: Chem 416:10–19

    Article  CAS  Google Scholar 

  7. Fraile JM, García JI, Herrerías CI, Mayoral JA, Pires E (2009) Chem Soc Rev 38:695

    Article  CAS  PubMed  Google Scholar 

  8. Salavati-Niasari M, Ganjali MR, Norouzi P (2007) J Porous Mater 14:423

    Article  CAS  Google Scholar 

  9. Hatefi M, Moghadam M, Sheikhshoaei I, Mirkhani V, Tangestaninejad S, Mohammad Poor-Baltork I, Kargar H (2009) Appl Catal 370:66

    Article  CAS  Google Scholar 

  10. Abou Khalil T, Ben Chaabene S, Boujday S, Bergaoui L (2015) IOSR-JAC 8:36

    CAS  Google Scholar 

  11. Salavati-Niasari M, Badiei A, Saberyan K (2011) Chem Eng J 173:651

    Article  CAS  Google Scholar 

  12. Kuzniarska-Biernacka I, Pereira C, Carvalho AP, Pires J, Freire C (2011) Appl Clay Sci 53:195

    Article  CAS  Google Scholar 

  13. Hu JL, Wu QY, Li KX, Li W, Ma FY, Zhang SQ, Su F, Guo YH, Wang YH (2010) Catal Commun 12:238

    Article  CAS  Google Scholar 

  14. Parida KM, Singha S, Sahoo PC (2010) J Mol Catal A: Chem 325:40

    Article  CAS  Google Scholar 

  15. Veld B (1992) Introduction to clay minerals. Springer, Netherlands

    Book  Google Scholar 

  16. Newman ACD (1987) Chemistry of clays and clay minerals. Wiley, New York

    Google Scholar 

  17. Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  18. Gil A, Korili SA, Trujillano R, Vicente MA (2010) Pillared clays and related catalysts. Springer, New York

    Book  Google Scholar 

  19. Abou Khalil T, Ben Chaabene S, Boujday S, Blanchard J, Bergaoui L (2015) J Sol-Gel Sci Technol 75:436

    Article  CAS  Google Scholar 

  20. Valkenberg MH, Hölderich WF (2002) Catal Rev 44:321

    Article  CAS  Google Scholar 

  21. Moller K, Bein T (1998) Chem Mater 10:2950

    Article  CAS  Google Scholar 

  22. Huang J, Fu X, Wang G, Ge Y, Miao Q (2012) J Mol Catal A: Chem 357:162

    Article  CAS  Google Scholar 

  23. Huang J, Fu X, Wang G, Ge Y, Miao Q (2012) Catal Sci Technol 2:1040

    Article  CAS  Google Scholar 

  24. Huang J, Fu X, Miao Q (2011) Appl Catal A 407:163

    Article  CAS  Google Scholar 

  25. Salmain M, Ghasemi M, Boujday S, Pradier C-M (2012) Biosens Bioelectron 173:148

    CAS  Google Scholar 

  26. Bois L, Bonhommé A, Ribes A, Pais B, Raffin G, Tessier F (2003) Colloids Surf A 221:221

    Article  CAS  Google Scholar 

  27. Meera KMS, Sankar RM, Murali A, Jaisankar SN, Mandal AB (2012) Colloids Surf B 90:204

    Article  CAS  Google Scholar 

  28. Qian Z, Hu G, Zhang S, Yang M (2008) Phys B 403:3231

    Article  CAS  Google Scholar 

  29. Silva AR, Botelho J (2014) J Mol Catal A: Chem 381:171

    Article  CAS  Google Scholar 

  30. Al-Oweini R, El-Rassy H (2009) J Mol Struct 919:140

    Article  CAS  Google Scholar 

  31. Silva AR, Wilson K, Clark JH, Freire C (2006) Microporous Mesoporous Mater 91:128

    Article  CAS  Google Scholar 

  32. Rao CNR, Venkataraghavan R (1962) Spectrochim Acta 18:54

    Google Scholar 

  33. Bedford EE, Boujday S, Humblot V, Gu FX, Pradier C-M (2014) Colloids Surf B 116:489

    Article  CAS  Google Scholar 

  34. Boujday S, Nasri S, Salmain M, Pradier C-M (2010) Biosens Bioelectron 26:1750

    Article  CAS  PubMed  Google Scholar 

  35. Luo R, Tan R, Peng Z, Zheng W, Kong Y, Yin D (2012) J Catal 287:170

    Article  CAS  Google Scholar 

  36. Kim A, Filler MA, Kim S, Bent SF (2005) J Am Chem Soc 127:6123

    Article  CAS  PubMed  Google Scholar 

  37. Pereira C, Patrício S, Silva AR, Magalhães AL, Paula Carvalho A, Pires J, Freire C (2007) J Colloid Interface Sci 316:570

    Article  CAS  PubMed  Google Scholar 

  38. Cai ZY, Zhu MQ, Chen J, Shen YY, Zhao J, Tang Y, Chen XZ (2010) Catal Commun 12:197

    Article  CAS  Google Scholar 

  39. Dietliker K (1991) Chemistry and technology of UV and EB formulation for coatings, inks and paints, vol III. SITA Technology, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Souhir Boujday or Latifa Bergaoui.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou Khalil, T., Boujday, S., Blanchard, J. et al. Characterization and Catalytic Activity of Mn(salen) Supported on a Silica/Clay-Mineral Composite: Influence of the Complex/Support Interaction on the Catalytic Efficiency. Chemistry Africa 2, 77–87 (2019). https://doi.org/10.1007/s42250-018-0023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-018-0023-7

Keywords

Navigation