Skip to main content
Log in

Desorption of La3+ and Ce3+ from Treated ‘Chert’ a Siliceous Byproduct of the Phosphate Mining Industry of Gafsa-Metlaoui Basin (Southwestern Tunisia)

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Chert, the most abundantby-product of the phosphate mining industry, collected from the Metlaoui Gafsa basin underwent purification treatments and was characterized by various analytical methods (XRD, XRF, SEM, FTIR, laser granulometry). The obtained treated chert is a siliceous phase SiO2 (~ 98%) mainly composed of opal-CT (trydimite phase and cristobalite) and traces of quartz. The chert morphology is granular. Treated chert has been successfully tested and proved to be an effective sorbent of rare earths. In this study, the desorption of La3+ and Ce3+ from ion-loaded chert was investigated and the reversibility of sorption reaction was verified. Several eluting agents at different concentrations were tested to desorb those lanthanides such as mineral acids (HCl and HNO3), chloride salt (CaCl2) and ultra pure water. Results show that, HCl and CaCl2 are efficient eluents and the adsorbed Ce3+and La3+ can be easily eluted by them. However, the highest desorption percentages were achieved using calcium chloride as eluting agent (Ce3+, 93.651%; La3+, 96.446%). Kinetics of desorption of La3+ and Ce3+ from treated chert were studied. The rate of desorption was initially fast in the first 30 min, but gradually declined with time. Among all tested kinetic models, the pseudo-second-order model fits the kinetic data best with a better correlation coefficient (R2 > 0.9) and the desorption isotherms fitted better to freundlich, which means that lanthanum and cerium release was dominated by multilayer desorption process from heterogeneous and independent surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pecht MG, Kaczmarek RE, Song X, Hazelwood DA, Kavetsky RA, Anand DK (2012) Rare earth materials: insights and concerns. Calce Epsc Press, Maryland

    Google Scholar 

  2. Krishnamurthy N, Gupta CK (2005) Extractive metallurgy of rare earths, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Office of Research and Development Cincinnati (2012) Rare earth elements: A review of production, processing, recycling, and associated environmental issues. Environmental Protection Agency, USA

    Google Scholar 

  4. Torab-Mostaedi M (2013) Chem Ind Chem Eng Q 19:79–88

    Article  CAS  Google Scholar 

  5. Kim P, Anderko A, Navrotsky A, Riman RE (2018) Minerals 8:106–130

    Article  CAS  Google Scholar 

  6. Rout A, Binnemans K (2014) Dalton T 34:3168–3195

    Google Scholar 

  7. Ahmed SH, Helaly OS, Abd El-Ghany MS (2014) Int J Chem Mol Nucl Mater Metall Eng 8:866–872

    Google Scholar 

  8. Garcıa Fern´andez R, Garcıa Alonso JI (2008) J Chromatogr A 1180:59–65

    Article  CAS  Google Scholar 

  9. Zhao F, Repo E, Meng Y, Wang X, Yin D, Sillanpa M (2016) J Colloid Interf Sci 465:215–224

    Article  CAS  Google Scholar 

  10. Farahmand E (2016) Geology 6:189–200

    CAS  Google Scholar 

  11. Takahashi Y, Châtellier X, Hattori KH, Kato K, Fortin D (2005) Chem Geol 219:53–67

    Article  CAS  Google Scholar 

  12. Marwani HM, Alsafrani AE (2013) J Anal Sci Technol 4:13–23

    Article  Google Scholar 

  13. Karadaş C, Derya K (2014) Water Air Soil Pollut 225:2192–2202

    Article  CAS  Google Scholar 

  14. Bahramifar N, Yamini Y (2005) Anal Chim Acta 540:325–332

    Article  CAS  Google Scholar 

  15. Roosen J, Binnemans K (2014) J Mater Chem A 2:1530–1540

    Article  CAS  Google Scholar 

  16. Roosen J, Spooren J, Binnemans K (2014) J Mater Chem A 2:19415–19426

    Article  CAS  Google Scholar 

  17. Zolfonoun E, Yousefi SR (2016) J Braz Chem Soc 27:2348–2353

    CAS  Google Scholar 

  18. Anastopoulos I, Bhatnagar A, Lima EC (2016) J Mol Liq 221:954–962

    Article  CAS  Google Scholar 

  19. Utomo HD, Salim MR (2009) Asian J Water Environ Pollut 6:73–80

    CAS  Google Scholar 

  20. API: Agency for the Promotion of Industry and Innovation in Tunisia (2009) Les perspectives de développement industriel du gouvernorat de Gafsa. API/CEPI, Tunisia

    Google Scholar 

  21. Tucker ME (2001) Sedimentary petrology: an introduction to the origin of sedimentary rocks, 3rd edn. Wiley-Blackwell, Hoboken, USA

    Google Scholar 

  22. Iakovleva E, Sillanpää M (2013) Environ Sci Pollut Res Int 20:7878–7899

    Article  CAS  PubMed  Google Scholar 

  23. Bashiri H (2012) Phys Chem 2(5):80–85

    Article  CAS  Google Scholar 

  24. Li D, Huang S, Wang W, Peng A (2001) Chemosphere 44:663–669

    Article  CAS  PubMed  Google Scholar 

  25. Moldoveanu AG, Papangelakis GV (2012) Hydrometallurgy 117–118:71–78

    Article  CAS  Google Scholar 

  26. van der Watt JG, Waanders FB (2012) J South Afr Inst Min Metall 112:281–285

    Google Scholar 

  27. Reyhanitabar A, Karimian N (2008) J Agric Environ Sci 4:287–293

    Google Scholar 

  28. Saidi R, Tlili A, Fourati A, Ammar N, Ounis A, Jamoussi F (2012) Mater Sci Eng 28:1–8

    Google Scholar 

  29. Tlili A, Saidi R, Fourati A, Ammar N, Jamoussi F (2012) Appl Clay Sci 62–63:47–57

    Article  CAS  Google Scholar 

  30. Liang P, Liu Y, Guo L (2005) Spectrochim Acta B 60:125–129

    Article  CAS  Google Scholar 

  31. Wankasi D, Horsfall MJ, Spiff AI (2005) Afr J Biotechnol 4:923–927

    CAS  Google Scholar 

  32. Al-Bayati RA, Ahmed SA (2011) Int J Chem 3:21–30

    CAS  Google Scholar 

  33. Shirvani M, Shariatmadari H, Kalbasi M (2007) Appl Clay Sci 37:175–184

    Article  CAS  Google Scholar 

  34. Ponou J, Dodbiba G, Anh JW, Fujita T (2016) J Environ Chem Eng 4:3761–3766

    Article  CAS  Google Scholar 

  35. Rani S, Sud D (2015) Plant Soil Environ 61:36–42

    Article  CAS  Google Scholar 

  36. Smith CB (1998) Infrared spectral interpretation: a systematic approach. CRC Press, Boca Raton

    Google Scholar 

  37. Hughes ID, Däne M, Ernst A, Hergert W, Lüders M, Poulter J, Staunton JB, Svane A, Szotek Z, Temmerman WM (2007) Nature 446:650–653

    Article  CAS  PubMed  Google Scholar 

  38. Wen B, Shan XQ, Lin JM, Tang GG, Bai NB, Yuan DA (2002) Soil Sci Soc Am J 66:1198–1206

    Article  CAS  Google Scholar 

  39. Stirk AW, van Staden J (2002) Bot Mar 45:9–16

    Article  CAS  Google Scholar 

  40. Hubbe MA, Hasan SH, Ducoste JJ (2011) BioResources 6:2161–2287

    Google Scholar 

  41. Kang SY, Lee JU, Moon SH, Kim KW (2004) Chemosphere 56:141–147

    Article  CAS  PubMed  Google Scholar 

  42. Diniz V, Volesky B (2006) Sep Purif Technol 50:71–76

    Article  CAS  Google Scholar 

  43. Kyzas ZG (2012) Materials 5:1826–1840

    Article  CAS  PubMed Central  Google Scholar 

  44. Kandpal G, Srivastava PC, RAM B (2005) Water Air Soil Pollut 161:353–363

    Article  CAS  Google Scholar 

  45. Teng Y, Liu Z, Xu G, Zhang K (2017) Energies 10:115–128

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Bouchmila.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchmila, I., Bejaoui Kefi, B., Souissi, R. et al. Desorption of La3+ and Ce3+ from Treated ‘Chert’ a Siliceous Byproduct of the Phosphate Mining Industry of Gafsa-Metlaoui Basin (Southwestern Tunisia). Chemistry Africa 2, 89–101 (2019). https://doi.org/10.1007/s42250-018-0022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-018-0022-8

Keywords

Navigation