Skip to main content
Log in

Effect of 2-Mercaptobenzimidazole Concentration on Electrochemical Behavior of Brass (Cu–40Zn) Surface in Acid Medium

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Electrochemical behavior of brass electrode (Cu–40Zn) in oxalic acid solution was studied in the absence and presence of organic inhibitor 2-Mercaptobenzimidazole (2-MBI) with different concentrations at ambient temperature using voltammetry, general corrosion (Rp) and electrochemical impedance spectroscopy (EIS). The results showed that the electrochemical behavior of brass surface is similar to the copper one in the same conditions and revealed also the absence of the complexity phenomenon between the brass and the oxalate. Evolution of abandonment potential presents two different behaviors of electrode surface according to the concentration of organic inhibitor (2-MBI). Polarization curves showed that the addition of organic inhibitor (2-MBI) decreases the current density and shifts the anodic and cathodic branches towards more positive and more negative potentials. The plot of C/θ against the inhibitor concentration (C) shows that (2-MBI) strongly physisorbed on the brass electrode according to Langmuir isotherm. Measurements of polarization resistance and impedances show that the optimal concentration of the inhibitor is (0.5 mM) which gives a protection rate exceeds 89%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

E:

Potential

i:

Current density

R:

Perfect gas constant

T:

Temperature

C:

Concentration

v:

Scan rate

2 MBI:

2-Mercaptobenzimidazol

Ecorr :

Corrosion potential

icorr :

Corrosion current density

Rp :

Polarization resistance

Rtc :

Charge transfer resistance

Rel :

Electrolyte resistance

Cd :

Double layer capacitance

Zreal :

Real part of impedance

Zim :

Imaginary part of impedance

f:

Frequency

P %:

Protection rate

K:

Equilibrium constant

\(\Delta G_{ads}^{0}\) :

Adsorption standard enthalpy

E%:

Inhibition efficiency

\(\beta a\) :

Anodic coefficient transfer

\(\beta c\) :

Cathodic coefficient transfer

References

  1. Arnaud D, Barbery J, Biais R, Fragette B, Naudot P (2018) Propriétés du cuivre et de ses alliages, Technique de l’Ingénieur:M430

  2. Barbery J (2018) Données numériques sur le cuivre et ses alliages corroyés, Technique de l’Ingénieur:M433

  3. Diagrams (1992) ASM Handbook, vol 3: alloy phase. ASM International, Materials Park, OH

    Google Scholar 

  4. Heidersbach RH, Verink ED (1972) Corrosion 28:397–418

    Article  CAS  Google Scholar 

  5. Hideo S, Hideaki E (1967) Corros Sci 7:513–523

    Article  Google Scholar 

  6. Davis JR (2001) Copper and copper alloys. ASM International, Materials Park

    Google Scholar 

  7. Habib K, Riad W, Muhanna K, Al-Sumait H (2002) Desalination 142:5–9

    Article  CAS  Google Scholar 

  8. Sohn S, Kang T (2002) J Alloy Compd 335:281–289

    Article  CAS  Google Scholar 

  9. Karpagavalli R, Balasubramaniam R (2007) Corros Sci 49:963–979

    Article  CAS  Google Scholar 

  10. Newman RC, Shahrabi T, Sieradzki K (1988) Corros Sci 28:873–879

    Article  CAS  Google Scholar 

  11. El-Sherif RM, Ismail KM, Badawy WA (2004) Electrochim Acta 49:5139–5150

    Article  CAS  Google Scholar 

  12. Ismail KM, Elsherif RM, Badawy WA (2004) Electrochim Acta 49:5151–5160

    Article  CAS  Google Scholar 

  13. Bond JW (2008) J Forensic Sci 53:812–822

    Article  CAS  Google Scholar 

  14. Wilhelm SM, Tanizawa Y, Liu C, Hackerman N (1982) Corros Sci 22:791–805

    Article  CAS  Google Scholar 

  15. Kermani M, Scully JC (1979) Corros Sci 19:111–122

    Article  CAS  Google Scholar 

  16. Cole AT, Newman RC, Sieradzki K (1988) Corros Sci 28:109–118

    Article  CAS  Google Scholar 

  17. Zhang X, Liu X, Wallinder IO, Leygraf C (2016) Corros Sci 103:20–29

    Article  CAS  Google Scholar 

  18. Hosseinpour S, Forslund M, Johnson CM, Pan J, Leygraf C (2016) Surf Sci 648:170–176

    Article  CAS  Google Scholar 

  19. Fan H, Li S, Zhao Z, Wang H, Shi Z, Zhang L (2011) Corros Sci 53:4273–4281

    Article  CAS  Google Scholar 

  20. Li Y, He J-B, Zhang M, He X-L (2013) Corros Sci 74:116–122

    Article  CAS  Google Scholar 

  21. Gao G, Liang CH (2007) Corros Sci 49:3479–3493

    Article  CAS  Google Scholar 

  22. Gerengi H, Darowicki K, Bereket G, Slepski P (2009) Corros Sci 51:2573–2579

    Article  CAS  Google Scholar 

  23. Antonijevic MM, Milic SM, Serbula SM, Bogdanovic GD (2005) Electrochim Acta 50:3693–3701

    Article  CAS  Google Scholar 

  24. Gao G, Liang C (2007) Electrochim Acta 52:4554–4555

    Article  CAS  Google Scholar 

  25. Mihit M, El Issami S, Bouklah M, Bazzi L, Hammouti B, Ait Addi E, Salghi R, Kertit S (2006) Appl Surf Sci 252:2389–2395

    Article  CAS  Google Scholar 

  26. Ramde T, Rossi S, Zanella C (2014) Appl Surf Sci 307:209–216

    Article  CAS  Google Scholar 

  27. Abed Y, Kissi M, Hammouti B, Taleb M, Kertit S (2004) Prog Org Coat 50:144–147

    Article  CAS  Google Scholar 

  28. Davoodi A, Honarbakhsh S, Farzi GA (2015) Prog Org Coat 88:106–115

    Article  CAS  Google Scholar 

  29. Müller B, Schubert M (1999) Prog Org Coat 37:193–197

    Article  Google Scholar 

  30. Ravichandran R, Nanjundan S, Rajendran N (2004) Appl Surf Sci 236:241–250

    Article  CAS  Google Scholar 

  31. Kosec T, Milošev I, Pihlar B (2007) Appl Surf Sci 253:8863–8873

    Article  CAS  Google Scholar 

  32. Mamaş S, Kıyak T, Kabasakaloğlu M, Koç A (2005) Mater Chem Phys 93:41–47

    Article  Google Scholar 

  33. Kılınççeker G (2008) Colloids Surf A Physicochem Eng Asp 329:112–118

    Article  Google Scholar 

  34. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  35. Mihit M, El Issami S, Bouklah M, Bazzi L, Hammouti B, Ait Addi E, Salghi R, Kertit S (2006) Appl Surf Sci 252:2389–2395

    Article  CAS  Google Scholar 

  36. Langmuir I (1947) J Am Chem Soc 39:1848

    Article  Google Scholar 

  37. Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New York, p 517

    Google Scholar 

  38. Abo El-khair BA, Khalifa OR, Abdelhamid IA (1987) Corros Prevent Control 34:1952

    Google Scholar 

  39. Otieno-Alego V, Hope GA, Notoya T, Schweinsberg DP (1996) Corros Sci 38:213

    Article  CAS  Google Scholar 

  40. Dafali A, Hammouti B, Aouniti A, Mokhlisse R, Kertit S, El Kacemi K (2000) Ann Chim Sci Mater 25:437

    Article  CAS  Google Scholar 

  41. Abdallah M, El-Naggar MM (2001) Mater Chem Phys 71:291

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oualid Dilmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilmi, O. Effect of 2-Mercaptobenzimidazole Concentration on Electrochemical Behavior of Brass (Cu–40Zn) Surface in Acid Medium. Chemistry Africa 1, 145–154 (2018). https://doi.org/10.1007/s42250-018-0019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-018-0019-3

Keywords

Navigation