Skip to main content
Log in

An Ionic Liquid Immobilized Palladium Complex for an Effective Heck and Suzuki Coupling Reactions

  • Short Communication
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A highly efficient catalytic activity towards Heck and Suzuki cross-coupling reactions was observed for a palladium complex in ethyl-methyl imidazolium hexafluorophosphate, [EMIM] PF6 ionic liquid medium, at ambient temperature. The system provides a stable, reusable method for the reaction. The optimization for the suitable reactions conditions was explored, and the effect of substituents on boronic acid was investigated. Using a very modest amount of catalyst, good-to-excellent yields were achieved. The reaction conditions were mild and most importantly, the catalyst-ionic liquid mixture was easily recoverable and reused for six times without much loss in the catalytic activity, causing negligible impact on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

References

  1. Tsuji J (2004) Palladium reagents and catalysts. Wiley, Chichester

    Book  Google Scholar 

  2. Chinchilla R, Nájera C (2014) Chem Rev 114:1783–1826

    Article  CAS  PubMed  Google Scholar 

  3. Johansson SCC, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 51:5062–5085

    Article  CAS  Google Scholar 

  4. Bermejo A, Ros A, Fernández R, Lassaletta JM (2008) J Am Chem Soc 130:15798–15799

    Article  CAS  PubMed  Google Scholar 

  5. Owusu MO, Handa S, Slaughter LM (2012) Appl Organomet Chem 26:712–717

    Article  CAS  Google Scholar 

  6. Mori A, Miyakawa Y, Ohashi E, Haga T, Maegawa T, Sajiki H (2006) Org Lett 8:3279–3281

    Article  CAS  PubMed  Google Scholar 

  7. McIntosh AI, Watson DJ, Burton JW, Lambert RM (2006) J Am Chem Soc 128:7329–7334

    Article  CAS  PubMed  Google Scholar 

  8. Wang D-S, Wang D-W, Zhou Y-G (2011) Synlett 7:947–950

    Google Scholar 

  9. Karimi B, Akhavan PF (2011) Inorg Chem 50:6063–6072

    Article  CAS  PubMed  Google Scholar 

  10. Chinchilla R, Nájera C (2007) Chem Rev 107:874–922

    Article  CAS  PubMed  Google Scholar 

  11. Fors BP, Buchwald SL (2010) J Am Chem Soc 132:15914–15917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tardiff BJ, McDonald R, Ferguson MJ, Stradiotto M (2012) J Org Chem 77:1056–1071

    Article  CAS  PubMed  Google Scholar 

  13. Dai W, Chalkley MJ, Brudvig GW, Hazari N, Melvin PR, Pokhrel R, Takase MK (2013) Organometallics 32:5114–5127

    Article  CAS  Google Scholar 

  14. Degtyareva ES, Burykina JV, Fakhrutdinov AN, Gordeev EG, Khrustalev VN, Ananikov VP (2015) ACS Catal 5:7208–7213

    Article  CAS  Google Scholar 

  15. Benhamou L, Besnard C, Kündig EP (2014) Organometallics 33:260–266

    Article  CAS  Google Scholar 

  16. Wang T, Hao X-Q, Huang J-J, Wang K, Gong J-F, Song M-P (2014) Organometallics 33:194–205

    Article  CAS  Google Scholar 

  17. Hashmi ASK, Hengst T, Lothschüt C, Rominger F (2010) Adv Synth Catal 352:1315–1337

    Article  CAS  Google Scholar 

  18. Newman SG, Lautens M (2010) J Am Chem Soc 132:11416–11417

    Article  CAS  PubMed  Google Scholar 

  19. Mu X, Chen S, Zhen X, Liu G (2011) Chem-Eur J 17:6039–6042

    Article  CAS  PubMed  Google Scholar 

  20. Wu XF, Neumann H, Beller M (2013) Chem Rev 113:1–35

    Article  CAS  PubMed  Google Scholar 

  21. Magano J, Dunetz JR (2011) Chem Rev 111:2177–2250

    Article  CAS  PubMed  Google Scholar 

  22. Torborg C, Beller M (2009) Adv Synth Catal 351:3027–3043

    Article  CAS  Google Scholar 

  23. Ranganath KVS, Onitsuka S, Kumar AK, Inanaga J (2013) Catal Sci Technol 3:2161–2181

    Article  CAS  Google Scholar 

  24. Corbet JP, Mignani G (2006) Chem Rev 106:2651–2710

    Article  CAS  PubMed  Google Scholar 

  25. Milhau L, Guiry PJ (2012) In transition metal catalyzed enantioselective allylic substitution in organic synthesis. In: Kazmaier U (ed) Topics in organometallic chemistry 38. Springer, Berlin

    Google Scholar 

  26. Schlummer B, Scholz U (2004) Adv Synth Catal 346:1599–1626

    Article  CAS  Google Scholar 

  27. Miao W, Chan TH (2006) Acc Chem Res 39:897–908

    Article  CAS  PubMed  Google Scholar 

  28. Handy ST, Okello M (2005) J Org Chem 70:2874–2877

    Article  CAS  PubMed  Google Scholar 

  29. Chemler SR, Trauner D, Danishefsky SJ (2001) Angew Chem Int Ed 40:4544–4568

    Article  CAS  Google Scholar 

  30. Suzuki A (2011) Angew Chem Int Ed 50:6722–6737

    Article  CAS  Google Scholar 

  31. Yang DX, Colletti SL, Wu K, Song MY, Li GY, Shen HC (2009) Org Lett 11:381–384

    Article  CAS  PubMed  Google Scholar 

  32. Jo TS, Kim SH, Shin J, Bae C (2009) J Am Chem Soc 131:1656–1657

    Article  CAS  PubMed  Google Scholar 

  33. Polshettiwar V, Decottignies A, Len C, Fihri A (2010) Chemsuschem 3:502–522

    Article  CAS  PubMed  Google Scholar 

  34. Liu GC, Huang JJ, Zhang JW, Wang XL, Lin HY (2013) Trans Met Chem 38:359–365

    Article  CAS  Google Scholar 

  35. Yao Q, Kinney EP, Yang Z (2003) J Org Chem 68:7528–7531

    Article  CAS  PubMed  Google Scholar 

  36. Liu L, Zhang Y, Xin B (2006) J Org Chem 71:3994–3997

    Article  CAS  PubMed  Google Scholar 

  37. Reetz MT, de Vries JG (2004) Chem Commun 14:1559–1563

    Article  CAS  Google Scholar 

  38. Karimi B, Enders D (2006) Org Lett 8:1237–1240

    Article  CAS  PubMed  Google Scholar 

  39. Stevens PD, Li G, Fan J, Yen M, Gao Y (2005) Chem Commun 35:4435–4437

    Article  CAS  Google Scholar 

  40. Astruc D, Lu F, Aranzaes JR (2005) Angew Chem Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  41. Polshettiwar V, Molnár Á (2007) Tetrahedron 63:6949–6976

    Article  CAS  Google Scholar 

  42. Ramakrishna D, Bhat BR (2010) Appl. Organometal Chem 24:663–666

    Article  CAS  Google Scholar 

  43. Lipshutz BH, Petersen TB, Abela AR (2008) Org Lett 10:1333–1336

    Article  CAS  PubMed  Google Scholar 

  44. Byrne FP, Jin S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, Hunt AJ, McElroy CR, Sherwood J (2016) Sustain Chem Process 4:7

    Article  CAS  Google Scholar 

  45. DeVasher RB, Moore LR, Shaughnessy KH (2004) J Org Chem 69:7919–7927

    Article  CAS  PubMed  Google Scholar 

  46. Nehra P, Khungar B, Pericherla K, Sivasubramanian SC (2014) Anil Kumar. Green Chem 16:4266–4271

    Article  CAS  Google Scholar 

  47. Baran T (2018) Carbohydr Polym 195:45–52

    Article  CAS  PubMed  Google Scholar 

  48. Baran T, Nuray YB, Ayfer M (2018) Int J Biol Macromol 115:249–256

    Article  CAS  PubMed  Google Scholar 

  49. Baran T (2018) Ultrason Sonochem 45:231–237

    Article  CAS  PubMed  Google Scholar 

  50. Baran T, Nuray YB, Ayfer M (2018) J Mol Struct 1160:154–160

    Article  CAS  Google Scholar 

  51. Baran T, Idris S, Murat K, Ayfer M (2016) J Mol Cat A 420:216–221

    Article  CAS  Google Scholar 

  52. Baran T, Eda A, Ayfer M (2015) J Mol Cat A 407:47–52

    Article  CAS  Google Scholar 

  53. Karthikeyan P, Vanitha A, Radhika P, Suresh K, Sugumaran A (2013) Tetrahedron Lett 54:7193–7197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DR would like to thank the IISc Bangalore for all the spectroscopic analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dileep Ramakrishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishna, D. An Ionic Liquid Immobilized Palladium Complex for an Effective Heck and Suzuki Coupling Reactions. Chemistry Africa 2, 21–28 (2019). https://doi.org/10.1007/s42250-018-00038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-018-00038-7

Keywords

Navigation