Skip to main content
Log in

Processing of Monazite Mineral Concentrate for Selective Recovery of Uranium

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A procedure for selective recovery of uranium from a hydrous oxide cake produced after alkali breakdown of Rosetta monazite mineral concentrate was proposed. This procedure was based on using urea as a leaching and chelating agent. The proposed procedure involved selective leaching of uranium (98%) using 150 g/L urea within 5 h agitation time, 400 rpm agitation speed at 25 °C and solid/liquid (S/L) ratio of 1/4 (weight/volume), leaving behind thorium (Th) and rare earth elements (REEs) content. Kinetics of leaching process as well as reaction mechanism between urea and uranium has been discussed. The results show that the predominant dissolution mechanism of uranium was chemically controlled and the apparent activation energy was 45.103 kJ/mole. The work was then shifted to separate Th selectively from the combined Th–REEs hydroxide cake via alkali dissolution of Th using a mixed weight of 3/1 Na2CO3/NaHCO3 in a total concentration of 150 g/L. Finally, a tentative flow-sheet for selective recovery of U, Th and REEs from the studied hydrous oxide cake was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(after Tian et al. [13])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

(after Osman [28])

Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gupta CK, Mukherjee TK (1990) Hydrometallurgy in extraction process. Lib Congress 1:90–1561 (ISBN 0-8493-6804. Printed by United States)

    Google Scholar 

  2. Alex P, Suri AK, Gupta CK (1998) Processing of xenotime concentrate. Hydrometallurgy 50:331–338

    Article  CAS  Google Scholar 

  3. Xie F, An Zhang T, Dreisinger D, Doyle F (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng 56:10–28

    Article  CAS  Google Scholar 

  4. Brisson VL, Zhuang WQ, Alvarez-Cohen L (2016) Bioleaching of rare earth elements from monazite sand. Biotechnol Bioeng 113:339–348

    Article  CAS  PubMed  Google Scholar 

  5. Gupta CK, Krishnamurthy N (2005) Extractive metallurgy of rare earths. CRC Press, NY

    Google Scholar 

  6. De Rohden C, Seine N, Peltier M (1950) Treatment of monazite. US 2783125A

  7. Hart K, Levins DM (1988) Management of wastes from the processing of rare earth minerals [online]. In: Chemeca 88 (16th: 1988: Sydney, NSW). Chemeca 88: Australia’s Bicentennial International Conference for the Process Industries; Preprints of Papers. Barton, ACT: Institution of Engineers, Australia, 1988: 82–88. National conference publication (Institution of Engineers, Australia); no. 88/16. https://search.informit.com.au/documentSummary;dn=844874222508066;res=IELENG>. Accessed 08 Mar 18 (ISBN: 0858254093)

  8. Amer TE, El-Sheikh EM, Gado MA, Abu-Khoziem HA, Zaki SA (2018) Selective recovery of lanthanides, uranium and thorium from Rosetta monazite mineral concentrate. Sep Sci Technol 53(10):1522–1530

    Article  CAS  Google Scholar 

  9. Amer TE, Abdella WM, Wahab GM, El-Sheikh EM (2013) A suggested alternative procedure for processing of monazite mineral concentrate. Int J Miner Process 125:106–111

    Article  CAS  Google Scholar 

  10. Gentile PS, Talley LH, Collopy TJ (1959) The chemistry of uranyl nitrate–hydroxide–urea systems. J Inorg Nucl Chem 10(1–2):110–113

    Article  CAS  Google Scholar 

  11. Manchanda VK, Pathak PN (2004) Amides and diamides as promising extractants in the back end of the nuclear fuel cycle: an overview. Sep Purif Technol 35:85–103

    Article  CAS  Google Scholar 

  12. Jr Siddall (1960) Effects of structure of N,N-disubstituted amides on the extraction of actinide and zirconium nitrates and of nitric acid. J Phys Chem 64:1863–1866

    Article  Google Scholar 

  13. Tian Y, Fu J, Zhang Y, Cao K, Bai C, Wang D, Li S, Xue Y, Ma L, Zheng C (2015) Ligand-exchange mechanism: new insight into solid-phase extraction of uranium based on a combined experimental and theoretical study. Phys Chem Chem Phys 17:7214–7223

    Article  CAS  PubMed  Google Scholar 

  14. Gentile JR, Roden AH, Klein RD (1972) An analysis-of-variance model for the intrasubject replication design. J Appl Behav Anal 5:193–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nichols P, Bylaska EJ, Schenter GK, de Jong W (2008) Equatorial and apical solvent shells of the UO2 2+ ion. J Chem Phys A 128:124507

    Article  CAS  Google Scholar 

  16. Shamov GA, Schreckenbach G (2005) Density functional studies of actinyl aquo complexes studied using small-core effective core potentials and a scalar four-component relativistic method. J Phys Chem A 109(48):10961–10974

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen-Trung C, Palmer DA, Begun GM, Peiffert C, Mesmer RE (2000) Aqueous uranyl complexes 1. raman spectroscopic study of the hydrolysis of uranyl(VI) in solutions of trifluoro methane sulfonic acid and/or tetra-methyl ammonium Hydroxide at 25 °C and 0.1 Mpa. J Sol Chem 29:101–129

    Article  CAS  Google Scholar 

  18. Clark DL, Conradson SD, Donohoe RJ, Keogh DW, Morris DE, Palmer PD, Rogers RD, Tait CD (1999) Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures, and oxo ligand exchange dynamics. Inorg Chem 38(7):1456–1466

    Article  CAS  Google Scholar 

  19. Tsushima S, Rossberg A, Ikeda A, Muller K, Scheinost AC (2007) Stoichiometry and structure of uranyl(VI) hydroxo dimer and trimer complexes in aqueous solution. Inorg Chem 46(25):10819–10826

    Article  CAS  PubMed  Google Scholar 

  20. Oda Y, Aoshima A (2002) Ab initio quantum chemical study on charge distribution and molecular structure of uranyl (VI) species with Raman Frequency. J Nucl Sci Technol 39(6):647–654

    Article  CAS  Google Scholar 

  21. Soderholm L, Skanthakumar S, Neuefeind J (2005) Determination of actinide speciation in solution using high-energy X-ray scattering. Anal Bioanal Chem 383(1):48–55

    Article  CAS  PubMed  Google Scholar 

  22. Wahlgren U, Moll H, Grenthe I, Schimmelpfennig B, Maron L, Vallet V, Gropen O (1999) Structure of uranium(VI) in strong alkaline solutions: a combined theoretical and experimental investigation. J Phys Chem A 103(41):8257–8264

    Article  CAS  Google Scholar 

  23. Neuefeind J, Soderholm L, Skanthakumar S (2004) Experimental coordination environment of uranyl(VI) in aqueous solution. J Phys Chem A 108(14):2733–2739

    Article  CAS  Google Scholar 

  24. El-Sheikh EM, Ali SA, Ghazala RA, Abdelwarith A, Salem F (2015) Leaching characteristics of uranium and copper from their mineralization in the carbonate rich latosol of Abu Thor locality, SW Sinai, Egypt. Isotop Radiat Res 47(2):231–246

    Google Scholar 

  25. Merczenko Z (1986) Separation and spectrophotometric determination of elements. Harwood, New York, p 708

    Google Scholar 

  26. Mathew KJ, Bürger S, Ogt SV, Mason PM, Narayanan UI (2009) Uranium assay determination using Davies and Gray titration Proceedings of The Eighth International Conference on Methods and Applications of Radio analytical Chemistry (Marc VIII) Kailua-Kona, Hawaii, 5

  27. https://wikitempinfo.blogspot.com/2018/03/urea.html

  28. Osman AA (2014) Investigation of uranium binding forms in environmentally relevant waters and bio-fluids. Ph.D, thesis, im Institut für Ressourcenökologie, Helmholtz-Zentrum Dresden-Rossendorf e.V. angefertigt, p 120

  29. Levenspiel O (1999) Chemical reaction engineering. Wiley, New York, Chichester, Weinheim, Brisbane, Toronto, p 684

    Google Scholar 

  30. Crundwell FK (2013) The dissolution and leaching of minerals. Mechanisms, myths and misunderstandings. Hydrometallurgy 139:132–148

    Article  CAS  Google Scholar 

  31. Harris JO, Robson AH (1948) Structure of urea. Nature 161:98

    Article  CAS  PubMed  Google Scholar 

  32. Venkatesan VK, Suryanarayana CV (1956) Conductance and other physical properties of urea solutions. J Phys Chem 60:775–776

    Article  CAS  Google Scholar 

  33. Van Staveren CJ, Fenton DE, Reinhoudt DN, Van Eerden J, Harkema S (1987) Complexation of Urea and UO2 2+ in a Schiff Base Macrocycle: a Mimic of an Enzyme Binding Site. J Am Chem Soc 109:3456–3458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. El-Sheikh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, T.A., El-Sheikh, E.M., Hassanin, M.A. et al. Processing of Monazite Mineral Concentrate for Selective Recovery of Uranium. Chemistry Africa 2, 123–134 (2019). https://doi.org/10.1007/s42250-018-00037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-018-00037-8

Keywords

Navigation