Convert waste petroleum coke to multi-heteroatom self-doped graphene and its application as supercapacitors

Abstract

Graphene is being suggested as a replacement for activated carbon in energy storage devices ranging from supercapacitors to batteries. The generation of multi-heteroatom self-doped graphene structure from waste materials will be an efficient way to meet the energy requirements with its productive applications in energy devices. Here, we present a novel, high-yield synthetic strategy to prepare multi-heteroatom self-doped highly porous graphene nanosheet from Pet coke (petroleum coke). Following a comprehensive characterization of graphene using electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and its functionality in supercapacitor application is reported. The electrochemical performance of Pet graphene, in combination with 1 M H2SO4, is able to deliver specific capacitance as high as ~ 170 F/g in 0.5 A/g current density, with low equivalent series resistance. The fabricated symmetric device exhibited a maximum specific capacitance of 44 F/g at 0.5 A/g current density with an excellent energy density of ~ 8.8 Wh/Kg along with a power density of ~ 800 W/Kg at 0.5 A/g current density. The fabricated device also shows high cycling stability and Coulombic efficiency. The results establish a new protocol for the large-scale synthesis of graphene from carbonaceous waste materials, making it competitive with its low-cost counterparts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig.8

References

  1. 1.

    M.I. Katsnelson, Graphene: Carbon in two dimensions. Mater. Today 10, 20–27 (2007)

    CAS  Article  Google Scholar 

  2. 2.

    A. Ambrosi, C.K. Chua, N.M. Latiff, A.H. Loo, C.H.A. Wong, A.Y.S. Eng, A. Bonanni, M. Pumera, Graphene and its electrochemistry – An update. Chem. Soc. Rev. 45, 2458–2493 (2016)

    Article  Google Scholar 

  3. 3.

    Y. Jing, Z. Zhou, C.R. Cabrera, Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A 2, 12104 (2014)

    CAS  Article  Google Scholar 

  4. 4.

    X.J. Lee, B.Y.Z. Hiew, K.C. Lai, L.Y. Lee, S. Gan, S. Thangalazhy-Gopakumar, S. Rigby, Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 98, 163–180 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    R.S. Varma, Biomass-derivedrRenewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustain. Chem. Eng. 7, 6458–6470 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    S. Ghosh, D. Mandal, A. Chandra, S.N.B. Bhaktha, Effect of laser irradiation on graphene oxide integrated TE-pass waveguide polarizer. J. Light. Technol. 37, 2380–2385 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin, M. Khalid, and Inamuddin, J. Ind. Eng. Chem. 66, 29 (2018)

  8. 8.

    A. Khan, A.A.P. Khan, M.M. Rahman, A.M. Asiri, K.A.A. Inamuddin, S.A. Hameed, Appl. Surf. Sci 433, 696 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    R. Perveen, A. Nasar, A.M.A. Inamuddin, A.K. Mishra, Int. J. Hydrogen Energy 43, 15144 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    G.K.D. Saharidis, M.G. Ierapetritou, Scheduling of loading and unloading of crude oil in a refinery with optimal mixture preparation. Ind. Eng. Chem. Res. 48, 2624–2633 (2009)

    CAS  Article  Google Scholar 

  11. 11.

    H. Kvande, P.A. Drabløs, The aluminum smelting process and innovative alternative technologies. J. Occup. Environ. Med. 56, S23–S32 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    W.E. Haupin, Electrochemistry of the Hall-Heroult process for aluminum smelting. J. Chem. Educ. 60, 279 (1983)

    CAS  Article  Google Scholar 

  13. 13.

    C. Coney, L. Crabtree, J. Gavin, W. Marcrum, A. Weber, L. Edwards, Miner. Met. Mater. Ser., 21–25 (2016)

  14. 14.

    S. Pintowantoro, M.A. Setiawan, F. Abdul, AIP Conf. Proc., 020035 (2018)

  15. 15.

    L. Edwards, The history and future challenges of calcined petroleum coke production and use in aluminum smelting. Jom 67, 308–321 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    T. Wang, Y. Wang, G. Cheng, C. Ma, X. Liu, J. Wang, W. Qiao, L. Ling, Catalytic graphitization of anthracite as an anode for lithium-ion batteries. Energy Fuel 34, 8911–8918 (2020)

    CAS  Article  Google Scholar 

  17. 17.

    T. Nakajima, Surface modification of carbon anodes for secondary lithium battery by fluorination. J. Fluor. Chem. 128, 277–284 (2007)

    CAS  Article  Google Scholar 

  18. 18.

    J. Caruso, K. Zhang, N. Schroeck, B. McCoy, S. McElmurry, Petroleum coke in the urban environment: A review of potential health effects. Int. J. Environ. Res. Public Health 12, 6218–6231 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    W. Li, B. Wang, J. Nie, W. Yang, L. Xu, L. Sun, Migration and transformation of vanadium and nickel in high sulfur petroleum coke during gasification processes. Energies 11, 2158 (2018)

    Article  CAS  Google Scholar 

  20. 20.

    A. Ramos Santos, R.J. da Silva, M.L. Grillo Renó, J. Pet. Sci. Res. 4, 1 (2015)

    Article  Google Scholar 

  21. 21.

    X. Liu, Z. Zhou, Q. Hu, Z. Dai, F. Wang, Experimental study on co-gasification of coal liquefaction residue and petroleum coke. Energy Fuel 25, 3377–3381 (2011)

    CAS  Article  Google Scholar 

  22. 22.

    A. Hart, J. Wood, In situ catalytic upgrading of heavy crude with CAPRI: Influence of hydrogen on catalyst pore plugging and deactivation due to coke. Energies 11, 636 (2018)

    Article  CAS  Google Scholar 

  23. 23.

    X. Zhan, J. Jia, Z. Zhou, F. Wang, Influence of blending methods on the co-gasification reactivity of petroleum coke and lignite. Energy Convers. Manag. 52, 1810–1814 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    S. Chowdhury, R. Balasubramanian, Holey graphene frameworks for highly selective post-combustion carbon capture. Sci. Rep. 6, 21537 (2016)

    CAS  Article  Google Scholar 

  25. 25.

    S. Tajik, D.P. Dubal, P. Gomez-Romero, A. Yadegari, A. Rashidi, B. Nasernejad, Inamuddin, A.M. Asiri, Int. J. Hydrogen Energy 42, 12384 (2017)

    CAS  Article  Google Scholar 

  26. 26.

    D. Neumaier, S. Pindl, M.C. Lemme, Integrating graphene into semiconductor fabrication lines. Nat. Mater. 18, 525–529 (2019)

    CAS  Article  Google Scholar 

  27. 27.

    H. Xia, J. Hu, J. Li, K. Wang, Electrochemical performance of graphene-coated activated mesocarbon microbeads as a supercapacitor electrode. RSC Adv. 9, 7004–7014 (2019)

    CAS  Article  Google Scholar 

  28. 28.

    N.H.N. Azman, H.N. Lim, Y. Sulaiman, Influence of concentration and electrodeposition time on the electrochemical supercapacitor performance of poly(3,4-ethylenedioxythiophene)/graphene oxide hybrid material. J. Nanomater. 2016, 1–10 (2016)

    Article  CAS  Google Scholar 

  29. 29.

    B.K. Kim, S. Sy, A. Yu, J. Zhang, in Handb. Clean Energy Syst (John Wiley & Sons, Ltd, Chichester, UK, 2015), pp. 1–25

    Google Scholar 

  30. 30.

    S. Balasubramaniam, A. Mohanty, S.K. Balasingam, S.J. Kim, A. Ramadoss, Comprehensive insight into the mechanism, material selection and performance evaluation of supercapatteries. Nano-Micro Lett. 12, 85 (2020)

    CAS  Article  Google Scholar 

  31. 31.

    W. Lv, Z. Li, Y. Deng, Q.-H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016)

    Article  Google Scholar 

  32. 32.

    W. Du, X. Jiang, L. Zhu, From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J. Mater. Chem. A 1, 10592 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    Y. Dong, S. Zhang, X. Du, S. Hong, S. Zhao, Y. Chen, X. Chen, H. Song, Boosting the electrical double‐layer capacitance of graphene by self‐doped defects through ball‐milling. Adv. Funct. Mater. 29, 1901127 (2019)

    Article  CAS  Google Scholar 

  34. 34.

    S. Li, Z. Li, G. Cao, M. Ling, J. Ji, D. Zhao, Y. Sha, X. Gao, C. Liang, Chem. – A Eur. J. 25, 14358 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    L. Hou, Z. Hu, X. Wang, L. Qiang, Y. Zhou, L. Lv, S. Li, Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors. J. Colloid Interface Sci. 540, 88–96 (2019)

    CAS  Article  Google Scholar 

  36. 36.

    A. O’Neill, U. Khan, P.N. Nirmalraj, J. Boland, J.N. Coleman, Graphene dispersion and exfoliation in low boiling point solvents. J. Phys. Chem. C 115, 5422–5428 (2011)

    Article  CAS  Google Scholar 

  37. 37.

    B. Andonovic, A. Ademi, A. Grozdanov, P. Paunović, A.T. Dimitrov, Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data. Beilstein J. Nanotechnol. 6, 2113–2122 (2015)

    CAS  Article  Google Scholar 

  38. 38.

    R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011)

    CAS  Article  Google Scholar 

  39. 39.

    X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, L.W. Yang, W.T. Zheng, C.Q. Sun, Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C–C bond in graphene. Nanoscale 4, 502–510 (2012)

    CAS  Article  Google Scholar 

  40. 40.

    S. Sarkar, E. Bekyarova, R.C. Haddon, Covalent chemistry in graphene electronics. Mater. Today 15, 276–285 (2012)

    CAS  Article  Google Scholar 

  41. 41.

    M.S. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 5355 (2010)

    CAS  Google Scholar 

  42. 42.

    L.G. Bulusheva, M.A. Kanygin, V.E. Arkhipov, K.M. Popov, Y.V. Fedoseeva, D.A. Smirnov, A.V. Okotrub, In situ X-ray photoelectron spectroscopy study of lithium interaction with graphene and nitrogen-doped graphene films produced by chemical vapor deposition. J. Phys. Chem. C 121, 5108–5114 (2017)

    CAS  Article  Google Scholar 

  43. 43.

    F.T. Johra, J.-W. Lee, W.-G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20, 2883–2887 (2014)

    CAS  Article  Google Scholar 

  44. 44.

    B. Pal, S. Yang, S. Ramesh, V. Thangadurai, R. Jose, Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 1, 3807–3835 (2019)

    Article  Google Scholar 

  45. 45.

    C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)

    CAS  Article  Google Scholar 

  46. 46.

    J. Tian, S. Wu, X. Yin, W. Wu, Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Appl. Surf. Sci. 496, 143696 (2019)

    CAS  Article  Google Scholar 

  47. 47.

    S.K. Singh, V.M. Dhavale, R. Boukherroub, S. Kurungot, S. Szunerits, N-doped porous reduced graphene oxide as an efficient electrode material for high performance flexible solid-state supercapacitor. Appl. Mater. Today 8, 141–149 (2017)

    Article  Google Scholar 

  48. 48.

    A. Bakandritsos, P. Jakubec, M. Pykal, M. Otyepka, Covalently functionalized graphene as a supercapacitor electrode material. FlatChem 13, 25–33 (2019)

    CAS  Article  Google Scholar 

  49. 49.

    A. Singh, A.J. Roberts, R.C.T. Slade, A. Chandra, High electrochemical performance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes. J. Mater. Chem. A 2, 16723–16730 (2014)

    CAS  Article  Google Scholar 

  50. 50.

    J.-S.M. Lee, M.E. Briggs, C.-C. Hu, A.I. Cooper, Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46, 277–289 (2018)

    CAS  Article  Google Scholar 

  51. 51.

    B. Senthilkumar, K.V. Sankar, L. Vasylechko, Y.-S. Lee, R.K. Selvan, Synthesis and electrochemical performances of maricite-NaMPO4(M = Ni, Co, Mn) electrodes for hybrid supercapacitors. RSC Adv. 4, 53192–53200 (2014)

    CAS  Article  Google Scholar 

  52. 52.

    R.K. Mishra, G.J. Choi, Y. Sohn, S.H. Lee, Gwang, Chem Comm 1 (2020)

  53. 53.

    Q. Abbas, R. Raza, I. Shabbir, A.G. Olabi, Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review. J. Sci. Adv. Mater. Devices 4, 341–352 (2019)

    Article  Google Scholar 

  54. 54.

    Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016)

    CAS  Article  Google Scholar 

  55. 55.

    R. Heimböckel, F. Hoffmann, M. Fröba, Insights into the influence of the pore size and surface area of activated carbons on the energy storage of electric double layer capacitors with a new potentially universally applicable capacitor model. Phys. Chem. Chem. Phys. 21, 3122–3133 (2019)

    Article  Google Scholar 

  56. 56.

    F. Yu, Z. Liu, R. Zhou, D. Tan, H. Wang, F. Wang, Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors. Mater. Horizons 5, 529–535 (2018)

    CAS  Article  Google Scholar 

  57. 57.

    Y. He, X. Han, Y. Du, B. Zhang, P. Xu, Polymers (Basel) 8, 366 (2016)

    Article  CAS  Google Scholar 

  58. 58.

    M. Kim, I. Oh, J. Kim, Supercapacitive behavior depending on the mesopore size of three-dimensional micro-, meso- and macroporous silicon carbide for supercapacitors. Phys. Chem. Chem. Phys. 17, 4424–4433 (2015)

    CAS  Article  Google Scholar 

  59. 59.

    S. Roldán, D. Barreda, M. Granda, R. Menéndez, R. Santamaría, C. Blanco, An approach to classification and capacitance expressions in electrochemical capacitors technology. Phys. Chem. Chem. Phys. 17, 1084–1092 (2015)

    Article  CAS  Google Scholar 

  60. 60.

    F. Scholz, Voltammetric techniques of analysis: The essentials. ChemTexts 1, 17 (2015)

    Article  Google Scholar 

  61. 61.

    YT. Liu; Zhang, F;Song, Y; Li, RSC 1 (2017)

Download references

Acknowledgments

AC acknowledges DST (India) under its Materials for Energy Storage (MES) Program. Conflict of Interest to fund the project: Hierarchically Nanostructured Energy Materials for Next Generation Na-ion Based Energy Storage Technologies and their Use in Renewable Energy Systems [DST/TMD/MES/2 K16/77]. Partha Kumbhakar and C.S.T. acknowledges AOARD grant no. FA2386-19-1-4039. C.S.T. acknowledges Ramanujan fellowship.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Amreesh Chandra or Chandra Sekhar Tiwary.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

D. Mandal and P.L. Mahapatra contributed equally to this work.

Supplementary information

ESM 1

(DOCX 3284 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mandal, D., Mahapatra, P.L., Kumari, R. et al. Convert waste petroleum coke to multi-heteroatom self-doped graphene and its application as supercapacitors. emergent mater. (2021). https://doi.org/10.1007/s42247-020-00159-1

Download citation

Keywords

  • Pet coke
  • Graphene
  • Multi-heteroatom
  • Porous structure
  • Energy storage
  • Supercapacitors