Abstract
Graphene is being suggested as a replacement for activated carbon in energy storage devices ranging from supercapacitors to batteries. The generation of multi-heteroatom self-doped graphene structure from waste materials will be an efficient way to meet the energy requirements with its productive applications in energy devices. Here, we present a novel, high-yield synthetic strategy to prepare multi-heteroatom self-doped highly porous graphene nanosheet from Pet coke (petroleum coke). Following a comprehensive characterization of graphene using electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and its functionality in supercapacitor application is reported. The electrochemical performance of Pet graphene, in combination with 1 M H2SO4, is able to deliver specific capacitance as high as ~ 170 F/g in 0.5 A/g current density, with low equivalent series resistance. The fabricated symmetric device exhibited a maximum specific capacitance of 44 F/g at 0.5 A/g current density with an excellent energy density of ~ 8.8 Wh/Kg along with a power density of ~ 800 W/Kg at 0.5 A/g current density. The fabricated device also shows high cycling stability and Coulombic efficiency. The results establish a new protocol for the large-scale synthesis of graphene from carbonaceous waste materials, making it competitive with its low-cost counterparts.
This is a preview of subscription content, access via your institution.









References
- 1.
M.I. Katsnelson, Graphene: Carbon in two dimensions. Mater. Today 10, 20–27 (2007)
- 2.
A. Ambrosi, C.K. Chua, N.M. Latiff, A.H. Loo, C.H.A. Wong, A.Y.S. Eng, A. Bonanni, M. Pumera, Graphene and its electrochemistry – An update. Chem. Soc. Rev. 45, 2458–2493 (2016)
- 3.
Y. Jing, Z. Zhou, C.R. Cabrera, Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A 2, 12104 (2014)
- 4.
X.J. Lee, B.Y.Z. Hiew, K.C. Lai, L.Y. Lee, S. Gan, S. Thangalazhy-Gopakumar, S. Rigby, Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 98, 163–180 (2019)
- 5.
R.S. Varma, Biomass-derivedrRenewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustain. Chem. Eng. 7, 6458–6470 (2019)
- 6.
S. Ghosh, D. Mandal, A. Chandra, S.N.B. Bhaktha, Effect of laser irradiation on graphene oxide integrated TE-pass waveguide polarizer. J. Light. Technol. 37, 2380–2385 (2019)
- 7.
J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin, M. Khalid, and Inamuddin, J. Ind. Eng. Chem. 66, 29 (2018)
- 8.
A. Khan, A.A.P. Khan, M.M. Rahman, A.M. Asiri, K.A.A. Inamuddin, S.A. Hameed, Appl. Surf. Sci 433, 696 (2018)
- 9.
R. Perveen, A. Nasar, A.M.A. Inamuddin, A.K. Mishra, Int. J. Hydrogen Energy 43, 15144 (2018)
- 10.
G.K.D. Saharidis, M.G. Ierapetritou, Scheduling of loading and unloading of crude oil in a refinery with optimal mixture preparation. Ind. Eng. Chem. Res. 48, 2624–2633 (2009)
- 11.
H. Kvande, P.A. Drabløs, The aluminum smelting process and innovative alternative technologies. J. Occup. Environ. Med. 56, S23–S32 (2014)
- 12.
W.E. Haupin, Electrochemistry of the Hall-Heroult process for aluminum smelting. J. Chem. Educ. 60, 279 (1983)
- 13.
C. Coney, L. Crabtree, J. Gavin, W. Marcrum, A. Weber, L. Edwards, Miner. Met. Mater. Ser., 21–25 (2016)
- 14.
S. Pintowantoro, M.A. Setiawan, F. Abdul, AIP Conf. Proc., 020035 (2018)
- 15.
L. Edwards, The history and future challenges of calcined petroleum coke production and use in aluminum smelting. Jom 67, 308–321 (2015)
- 16.
T. Wang, Y. Wang, G. Cheng, C. Ma, X. Liu, J. Wang, W. Qiao, L. Ling, Catalytic graphitization of anthracite as an anode for lithium-ion batteries. Energy Fuel 34, 8911–8918 (2020)
- 17.
T. Nakajima, Surface modification of carbon anodes for secondary lithium battery by fluorination. J. Fluor. Chem. 128, 277–284 (2007)
- 18.
J. Caruso, K. Zhang, N. Schroeck, B. McCoy, S. McElmurry, Petroleum coke in the urban environment: A review of potential health effects. Int. J. Environ. Res. Public Health 12, 6218–6231 (2015)
- 19.
W. Li, B. Wang, J. Nie, W. Yang, L. Xu, L. Sun, Migration and transformation of vanadium and nickel in high sulfur petroleum coke during gasification processes. Energies 11, 2158 (2018)
- 20.
A. Ramos Santos, R.J. da Silva, M.L. Grillo Renó, J. Pet. Sci. Res. 4, 1 (2015)
- 21.
X. Liu, Z. Zhou, Q. Hu, Z. Dai, F. Wang, Experimental study on co-gasification of coal liquefaction residue and petroleum coke. Energy Fuel 25, 3377–3381 (2011)
- 22.
A. Hart, J. Wood, In situ catalytic upgrading of heavy crude with CAPRI: Influence of hydrogen on catalyst pore plugging and deactivation due to coke. Energies 11, 636 (2018)
- 23.
X. Zhan, J. Jia, Z. Zhou, F. Wang, Influence of blending methods on the co-gasification reactivity of petroleum coke and lignite. Energy Convers. Manag. 52, 1810–1814 (2011)
- 24.
S. Chowdhury, R. Balasubramanian, Holey graphene frameworks for highly selective post-combustion carbon capture. Sci. Rep. 6, 21537 (2016)
- 25.
S. Tajik, D.P. Dubal, P. Gomez-Romero, A. Yadegari, A. Rashidi, B. Nasernejad, Inamuddin, A.M. Asiri, Int. J. Hydrogen Energy 42, 12384 (2017)
- 26.
D. Neumaier, S. Pindl, M.C. Lemme, Integrating graphene into semiconductor fabrication lines. Nat. Mater. 18, 525–529 (2019)
- 27.
H. Xia, J. Hu, J. Li, K. Wang, Electrochemical performance of graphene-coated activated mesocarbon microbeads as a supercapacitor electrode. RSC Adv. 9, 7004–7014 (2019)
- 28.
N.H.N. Azman, H.N. Lim, Y. Sulaiman, Influence of concentration and electrodeposition time on the electrochemical supercapacitor performance of poly(3,4-ethylenedioxythiophene)/graphene oxide hybrid material. J. Nanomater. 2016, 1–10 (2016)
- 29.
B.K. Kim, S. Sy, A. Yu, J. Zhang, in Handb. Clean Energy Syst (John Wiley & Sons, Ltd, Chichester, UK, 2015), pp. 1–25
- 30.
S. Balasubramaniam, A. Mohanty, S.K. Balasingam, S.J. Kim, A. Ramadoss, Comprehensive insight into the mechanism, material selection and performance evaluation of supercapatteries. Nano-Micro Lett. 12, 85 (2020)
- 31.
W. Lv, Z. Li, Y. Deng, Q.-H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016)
- 32.
W. Du, X. Jiang, L. Zhu, From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J. Mater. Chem. A 1, 10592 (2013)
- 33.
Y. Dong, S. Zhang, X. Du, S. Hong, S. Zhao, Y. Chen, X. Chen, H. Song, Boosting the electrical double‐layer capacitance of graphene by self‐doped defects through ball‐milling. Adv. Funct. Mater. 29, 1901127 (2019)
- 34.
S. Li, Z. Li, G. Cao, M. Ling, J. Ji, D. Zhao, Y. Sha, X. Gao, C. Liang, Chem. – A Eur. J. 25, 14358 (2019)
- 35.
L. Hou, Z. Hu, X. Wang, L. Qiang, Y. Zhou, L. Lv, S. Li, Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors. J. Colloid Interface Sci. 540, 88–96 (2019)
- 36.
A. O’Neill, U. Khan, P.N. Nirmalraj, J. Boland, J.N. Coleman, Graphene dispersion and exfoliation in low boiling point solvents. J. Phys. Chem. C 115, 5422–5428 (2011)
- 37.
B. Andonovic, A. Ademi, A. Grozdanov, P. Paunović, A.T. Dimitrov, Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data. Beilstein J. Nanotechnol. 6, 2113–2122 (2015)
- 38.
R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011)
- 39.
X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, L.W. Yang, W.T. Zheng, C.Q. Sun, Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C–C bond in graphene. Nanoscale 4, 502–510 (2012)
- 40.
S. Sarkar, E. Bekyarova, R.C. Haddon, Covalent chemistry in graphene electronics. Mater. Today 15, 276–285 (2012)
- 41.
M.S. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 5355 (2010)
- 42.
L.G. Bulusheva, M.A. Kanygin, V.E. Arkhipov, K.M. Popov, Y.V. Fedoseeva, D.A. Smirnov, A.V. Okotrub, In situ X-ray photoelectron spectroscopy study of lithium interaction with graphene and nitrogen-doped graphene films produced by chemical vapor deposition. J. Phys. Chem. C 121, 5108–5114 (2017)
- 43.
F.T. Johra, J.-W. Lee, W.-G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20, 2883–2887 (2014)
- 44.
B. Pal, S. Yang, S. Ramesh, V. Thangadurai, R. Jose, Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 1, 3807–3835 (2019)
- 45.
C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)
- 46.
J. Tian, S. Wu, X. Yin, W. Wu, Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Appl. Surf. Sci. 496, 143696 (2019)
- 47.
S.K. Singh, V.M. Dhavale, R. Boukherroub, S. Kurungot, S. Szunerits, N-doped porous reduced graphene oxide as an efficient electrode material for high performance flexible solid-state supercapacitor. Appl. Mater. Today 8, 141–149 (2017)
- 48.
A. Bakandritsos, P. Jakubec, M. Pykal, M. Otyepka, Covalently functionalized graphene as a supercapacitor electrode material. FlatChem 13, 25–33 (2019)
- 49.
A. Singh, A.J. Roberts, R.C.T. Slade, A. Chandra, High electrochemical performance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes. J. Mater. Chem. A 2, 16723–16730 (2014)
- 50.
J.-S.M. Lee, M.E. Briggs, C.-C. Hu, A.I. Cooper, Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46, 277–289 (2018)
- 51.
B. Senthilkumar, K.V. Sankar, L. Vasylechko, Y.-S. Lee, R.K. Selvan, Synthesis and electrochemical performances of maricite-NaMPO4(M = Ni, Co, Mn) electrodes for hybrid supercapacitors. RSC Adv. 4, 53192–53200 (2014)
- 52.
R.K. Mishra, G.J. Choi, Y. Sohn, S.H. Lee, Gwang, Chem Comm 1 (2020)
- 53.
Q. Abbas, R. Raza, I. Shabbir, A.G. Olabi, Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review. J. Sci. Adv. Mater. Devices 4, 341–352 (2019)
- 54.
Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016)
- 55.
R. Heimböckel, F. Hoffmann, M. Fröba, Insights into the influence of the pore size and surface area of activated carbons on the energy storage of electric double layer capacitors with a new potentially universally applicable capacitor model. Phys. Chem. Chem. Phys. 21, 3122–3133 (2019)
- 56.
F. Yu, Z. Liu, R. Zhou, D. Tan, H. Wang, F. Wang, Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors. Mater. Horizons 5, 529–535 (2018)
- 57.
Y. He, X. Han, Y. Du, B. Zhang, P. Xu, Polymers (Basel) 8, 366 (2016)
- 58.
M. Kim, I. Oh, J. Kim, Supercapacitive behavior depending on the mesopore size of three-dimensional micro-, meso- and macroporous silicon carbide for supercapacitors. Phys. Chem. Chem. Phys. 17, 4424–4433 (2015)
- 59.
S. Roldán, D. Barreda, M. Granda, R. Menéndez, R. Santamaría, C. Blanco, An approach to classification and capacitance expressions in electrochemical capacitors technology. Phys. Chem. Chem. Phys. 17, 1084–1092 (2015)
- 60.
F. Scholz, Voltammetric techniques of analysis: The essentials. ChemTexts 1, 17 (2015)
- 61.
YT. Liu; Zhang, F;Song, Y; Li, RSC 1 (2017)
Acknowledgments
AC acknowledges DST (India) under its Materials for Energy Storage (MES) Program. Conflict of Interest to fund the project: Hierarchically Nanostructured Energy Materials for Next Generation Na-ion Based Energy Storage Technologies and their Use in Renewable Energy Systems [DST/TMD/MES/2 K16/77]. Partha Kumbhakar and C.S.T. acknowledges AOARD grant no. FA2386-19-1-4039. C.S.T. acknowledges Ramanujan fellowship.
Author information
Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing financial interest.
Additional information
D. Mandal and P.L. Mahapatra contributed equally to this work.
Supplementary information
ESM 1
(DOCX 3284 kb)
Rights and permissions
About this article
Cite this article
Mandal, D., Mahapatra, P.L., Kumari, R. et al. Convert waste petroleum coke to multi-heteroatom self-doped graphene and its application as supercapacitors. emergent mater. (2021). https://doi.org/10.1007/s42247-020-00159-1
Received:
Accepted:
Published:
Keywords
- Pet coke
- Graphene
- Multi-heteroatom
- Porous structure
- Energy storage
- Supercapacitors