Synthesis and characterization of CNT/PVDF paper for electronic and energy storage applications

Abstract

Herein, we demonstrate a simple approach for the fabrication of MWCNT film on PVDF (polyvinylidene difluoride) membrane using vacuum filtration set-up. PVDF is a fluoropolymer with large number of applications as binder/separator in batteries and supercapacitors. In this work, a stable CNT/PVDF paper was formed. The film was then characterized by field emission scanning electron microscopy, X-ray diffractometry, and Fourier-transformed infrared spectroscopic techniques. The conductive paper was tested for super capacitor application. This study may pave a new way to make polymer-carbon nanomaterial and nanotube composite, which can have various applications in the field of strain sensors, flexible conductors, supercapacitors, and flexible batteries.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    A. You, M. A. Y. Be, and I. In, MWCNTs-PANi nanocomposite films prepared by AC-EPD technique and its potential for enhance supercapacitor electrode. AIP Conf Proc vol. 1875, no.1, pp. 020008, 2017

  2. 2.

    B. F. Bøguin and K. Szostak, A Self-supporting electrode for Supercapacitors prepared by one-step pyrolysis of carbon nanotube / Polyacrylonitrile blends, Adv. Mater., vol. 17, no. (19), pp. 2380–2384, 2005

  3. 3.

    S.A. Bansal, A.P. Singh, A. Kumar, S. Kumar, N. Kumar, J.K. Goswamy, Improved mechanical performance of bisphenol-a graphene-oxide nanocomposites. J. Compos. Mater. 52(16), 2179–2188 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    S.A. Bansal, A.P. Singh, S. Kumar, Reinforcing graphene oxide nano particles to enhance viscoelastic performance of epoxy nano-composites. J. Nanosci. Nanotechnol. 18, 1–7 (2018)

    Article  Google Scholar 

  5. 5.

    S.A. Bansal, A.P. Singh, S. Kumar, High strain rate behavior of epoxy graphene oxide nanocomposites. Int. J. Appl. Mech. 10(07), 1850072 (2018)

    Article  Google Scholar 

  6. 6.

    L. Yang, S. Member, A. Rida, S. Member, R. Vyas, RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans Microwave Theory Tech 55(12), 2894–2901 (2007)

    Article  Google Scholar 

  7. 7.

    A. Asadpoordarvish, A. Sandström, C. Larsen, R. Bollström, M. Toivakka, R. Österbacka, L. Edman, Light-emitting paper. Adv Funct Mater 25(21), 3238–3245 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    M. Hsieh, C. Kim, M. Nogi, K. Suganuma, Electrically conductive lines on cellulose nanopaper for flexible electrical devices. Nanoscale 5, 9289–9295 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    A. Yu, Victor Chabot and Jiujun Zhang (Fundamentals and Applications, CRC Press, Electrochemical Supercapacitors for Energy Storage and Delivery, 2017)

    Google Scholar 

  10. 10.

    B.C. Liu, F. Li, L. Ma, H. Cheng, Advanced materials for energy storage. Adv. Mater. 22(8), 28–62 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    R. Souad et al., Microporous activated carbon electrode derived from date stone without use of binder for capacitive deionization application. Mater. Res. Bull. 111, 342–349 (2018)

    Google Scholar 

  12. 12.

    S.A. Bansal et al., Synergistic effect of graphene and carbon nanotubes on mechanical and thermal performance of polystyrene. Mater Res Express 5(7), 075602 (2018)

    Article  Google Scholar 

  13. 13.

    K. Xia, H. Zhan, Y. Gu, Graphene and carbon nanotube hybrid structure : A review. Procedia IUTAM 21, 94–101 (2017)

    Article  Google Scholar 

  14. 14.

    N. Cheng et al., Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells. J. Power Sources 332, 24–29 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    L.G. Bulusheva et al., Fabrication of free-standing aligned multiwalled carbon nanotube array for Li-ion batteries. J. Power Sources 311, 42–48 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    D. Ma, J. Cai, X. Wu, H. Xu, Y. Tian, H. Zhao, Supercapacitor electrode materials treatment of multiwall carbon nanotubes based on the modified hummers method for supercapacitor electrode materials. J Renewable and Sustainable Energy 8, 01410 (2016)

    Article  Google Scholar 

  17. 17.

    L. Dong, W. Xue, D. Jinxing, Z. Chenglong, G. Jinshan, L. Peng, Crosslinked carbon nanotubes/Polyaniline composites as a Pseudocapacitive material with high cycling stability. Nanomaterials 5, 1034–1047 (2015)

    Article  Google Scholar 

  18. 18.

    C. Fu, H. Zhou, R. Liu, Z. Huang, J. Chen, Y. Kuang, Supercapacitor based on electropolymerized polythiophene and multi-walled carbon nanotubes composites. Mater. Chem. Phys. 132(2–3), 596–600 (2012)

    CAS  Article  Google Scholar 

  19. 19.

    S. Kumar, I. Kaur, K. Dharamvir, L.M. Bharadwaj, Controlling the density and site of attachment of gold nanoparticles onto the surface of carbon nanotubes. J. Colloid Interface Sci. 369(1), 23–27 (2012)

    CAS  Article  Google Scholar 

  20. 20.

    S. Kumar, H. Kaur, H. Kaur, Magnetic field-guided orientation of carbon nanotubes through their conjugation with magnetic nanoparticles. J. Mater. Sci. 47, 1489–1496 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    H. Misak, R. Asmatulu, Functionalization of carbon nanotube yarn by acid treatment. International Journal of Smart and Nano Materials 5(1), 34–43 (2016)

    Article  Google Scholar 

  22. 22.

    K. Pradeeswari, A. Venkatesan, P. Pandi, K. Karthik, K.V.H. Krishna, R.M. Kumar, Study on the electrochemical performance of ZnO nanoparticles synthesized via non-aqueous sol-gel route for supercapacitor applications study on the electrochemical performance of ZnO nanoparticles synthesized via nonaqueous sol-gel route for supercapacitor applications. Materials Research Express 6(10) (2019). https://doi.org/10.1088/2053-1591/ab3cae

  23. 23.

    A. Hübler et al., Printed paper photovoltaic cells. Adv Energy Mater 1(6), 1018–1022 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the University Grants Commission, New Delhi, India for Rajiv Gandhi National Junior Research Fellowship. Suresh Kumar would like to thank the Department of Science and technology, Science and Engineering Research Board (SERB), New Delhi, India for the ECRA research grant. The authors are thankful to the Department of Physics, Panjab University, Chandigarh, for XRD measurements. Parveen Kumar thanks the director of CSIR-CSIO for providing necessary infrastructure facility and acknowledges the Department of Science and Technology for INSPIRE faculty award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Twinkle.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Twinkle, Kaur, M., Gowsamy, J.K. et al. Synthesis and characterization of CNT/PVDF paper for electronic and energy storage applications. emergent mater. 3, 181–185 (2020). https://doi.org/10.1007/s42247-020-00074-5

Download citation

Keywords

  • Polyvinylidene difluoride
  • Carbon nanotubes
  • Supercapacitors
  • Cyclic voltammetry
  • Galvanostatic charge-discharge
  • Specific capacitance