Electrically conductive fabric coated with polyaniline: physicochemical characterisation and antibacterial assessment

Abstract

The present study investigated the potential antibacterial property of conductive cotton and polyester (PES) fabric coated with polyaniline (PANI). Phytic acid (10, 20, and 30% v/v) was used as a dopant. The fabricated fabric was produced via immersion technique with an immersion time of 30 minutes. The structural identification, conductivity, and morphological properties of prepared fabric were characterised with Fourier transform infrared spectroscopy (FT–IR), electrochemical impedance spectroscopy (EIS), and field emission scanning electron microscope (FESEM), respectively. The optimum conductivities of 2.28 × 10–4 S/m (for cotton) and 2.15 × 10–2 S/m (for PES) were recorded when doped with 30% (v/v) phytic acid. The antibacterial test showed that the fabricated fabric had relatively high antibacterial activity against K. pneumoniae, S. aureus, and E. coli strains.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6

References

  1. 1.

    B. Simoncic, B. Tomsic, Structures of novel antimicrobial agents for textiles. A review. Text. Res. J. 80(16), 1721–1737 (2010)

    CAS  Article  Google Scholar 

  2. 2.

    R. Hirase, M. Hasegawa, M. Shirai, Conductive fibers based on poly(ethylene terephthalate)–polyaniline composites manufactured by electrochemical polymerization. J. Appl. Polym. Sci. 87(7), 1073–1078 (2003)

    CAS  Article  Google Scholar 

  3. 3.

    J. Molina, A.I. del Río, J. Bonastre, F. Cases, Electrochemical polymerisation of aniline on conducting textiles of polyester covered with polypyrrole/AQSA. Eur. Polym. J. 45(4), 1302–1315 (2009)

    CAS  Article  Google Scholar 

  4. 4.

    A.C. Aksit, N. Onar, M.F. Ebeoglugil, I. Birlik, E. Celik, I. Ozdemir, Electromagnetic and electrical properties of coated cotton fabric with barium ferrite doped polyaniline film. J. Appl. Polym. Sci. 113(1), 358–366 (2009)

    CAS  Article  Google Scholar 

  5. 5.

    S.K. Dhawan, N. Singh, S. Venkatachalam, Shielding effectiveness of conducting polyaniline coated fabrics at 101GHz. Synth. Met. 125(3), 389–393 (2002)

    CAS  Article  Google Scholar 

  6. 6.

    K.H. Hong, K.W. Oh, T.J. Kang, Polyaniline–nylon 6 composite fabric for ammonia gas sensor. J. Appl. Polym. Sci. 92(1), 37–42 (2004)

    CAS  Article  Google Scholar 

  7. 7.

    G. Tsekouras, S.F. Ralph, W.E. Price, G.G. Wallace, (2004). Gold recovery using inherently conducting polymer coated textiles. Fibers Polym. 5(1), 1–5 (2004)

    CAS  Article  Google Scholar 

  8. 8.

    G. Kaur, R. Adhikari , P. Cass, M. Bown, P. Gunatillake, Electrically conductive polymers and composites for biomedical applications. RSC. Adv. 5, 37553–37567 (2015)

  9. 9.

    S.K. Dhawan, N. Singh, S. Venkatachalam, Shielding behaviour of conducting polymer-coated fabrics in X band, W-band and radio frequency range. Synth. Met. 129(3), 261–267 (2002)

    CAS  Article  Google Scholar 

  10. 10.

    R.V. Gregory, W.C. Kimbrell, H.H. Kuhn, Conductive textiles. Synth. Met. 28(1–2), 823–835 (1989)

    Article  Google Scholar 

  11. 11.

    G. Tsekouras, S.F. Ralph, W.E. Price, G.G. Wallace, Gold recovery using inherently conducting polymer coated textiles. Fibers Polym. 5(1), 1–5 (2004)

    CAS  Article  Google Scholar 

  12. 12.

    T. Hai Le, Y. Kim, H. Yoon, C. Polymers, Electrical and electrochemical properties of conducting polymers. Polymers (Basel), 9(4), 150 (2017)

  13. 13.

    Hassan, H. K., Atta, N. F., & Galal, A., Electropolymerization of aniline over chemically converted graphene-systematic study and effect of dopant. Int. J. Electrochem. Sci. 7, 11161–11181 (2012)

  14. 14.

    A. Eftekhari, L. Li, Y. Yang, Polyaniline supercapacitors. J. Power Sources 347, 86–107 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.054

    CAS  Article  Google Scholar 

  15. 15.

    D. Mawad, C. Mansfield, A. Lauto, F. Perbellini, G.W. Nelson, J. Tonkin, S.O. Bello, D.J. Carrad, A.P. Micolich, M.M. Mahat, J. Furman, D. Payne, A.R. Lyon, J. Justin Gooding, S.E. Harding, C.M. Terracciano, M.M. Stevens, A conducting polymer with enhanced electronic stability applied in cardiac models. Sci. Adv. 2, 11, e1601007 (2016)

  16. 16.

    L. Pan, G. Yu, D. Zhai, H.R. Lee, W. Zhao, N. Liu, H. Wang, B.C.-K. Tee, Y. Shi, Y. Cui, Z. Bao, Highly electroactive conducting polymer hydrogel. Proc. Nat. Acad. Sci. 109(24), 9287–9292 (2012). https://doi.org/10.1073/pnas.1202636109

    Article  Google Scholar 

  17. 17.

    R. Julia, G.N. Marija, K. N. Michel, S. Simon, The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ. 6, e5135 (2018)

  18. 18.

    J. Robertson, M. Gizdavic-nikolaidis, M.K. Nieuwoudt, The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ 6, e5135 (2018). https://doi.org/10.7717/peerj.5135

    CAS  Article  Google Scholar 

  19. 19.

    N. Shi, X. Guo, H. Jing, J. Gong, C. Sun, K. Yang, Antibacterial Effect of the Conducting Polyaniline. J. Mater. Sci. Technol. 2(22), 289–290 (2006)

    Google Scholar 

  20. 20.

    D. Nicolas-Debarnot, F. Poncin-Epaillard, Polyaniline as a New Sensitive Layer for Gas Sensors. Anal. Chim. Acta 475(1-2), 1–15 (2003). https://doi.org/10.1016/S0003-2670(02)01229-1

    CAS  Article  Google Scholar 

  21. 21.

    J. Molina, M.F. Esteves, J. Fernández, J. Bonastre, F. Cases, Polyaniline coated conducting fabrics . Chemical and electrochemical characterization. Eur. Polym. J. 47(10), 2003–2015 (2015)

    Google Scholar 

  22. 22.

    F. Kanwal, A. Gul, T. Jamil, Synthesis of acid doped conducting polyaniline. J. Chem. Soc. Pak. 29(6), 553–557 (2007)

  23. 23.

    K.M. Ziadan, W.T. Saadon, Study of the electrical characteristics of polyaniline prepeared by electrochemical polymerization. Energy Procedia 19, 71–79 (2012). https://doi.org/10.1016/j.egypro.2012.05.184

    CAS  Article  Google Scholar 

  24. 24.

    Nurzatul, S., Omar, I., Zainal Ariffin, Z., Akhir, R. M., Izzharif, M., Halim, A.,… Mahat, M. M. (2018). Electrically Conductive Polyester Fabrics Embedded Polyaniline. Int. J. Eng. Technol. 7, 524–528. Retrieved from www.sciencepubco.com/index.php/IJET

  25. 25.

    A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci.: Mater. Int. 22(4), 273–280 (2012)

    Article  Google Scholar 

  26. 26.

    Rehnby, W., Gustafsson, M., & Skrifvars, M., Coating of textile fabrics with conductive polymers for smart textile applications. Welcome to Ambience’08, (December), 100–103. Retrieved from http://bada.hb.se/bitstream/2320/3936/1/Ambience08.pdf#page=58 (2008)

  27. 27.

    A. Kaynak, R. Foitzik, Methods of Coating Textiles with Soluble Conducting Polymers. Res. J. Text. Appar. 15(2), 107–113 (2011). https://doi.org/10.1108/RJTA-15-02-2011-B012

    CAS  Article  Google Scholar 

  28. 28.

    R. Perumalraj, Electrical Surface Resistivity of Polyaniline Coated Woven Fabrics. J. Textile Sci. Eng. 05(03) (2015). https://doi.org/10.4172/2165-8064.1000196

  29. 29.

    The 411 on cotton vs polyester : The pros and cons. (2018, February 14). Retrieved from https://doi.org/10.1016/j.actbio.2011.018

  30. 30.

    M.R. Gizdavic-Nikolaidis, J.R. Bennett, S. Swift, A.J. Easteal, M. Ambrose, Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomater. 7(12), 4204–4209 (2011). https://doi.org/10.1016/j.actbio.2011.07.018

    CAS  Article  Google Scholar 

  31. 31.

    M. Mashkour, M. Rahimnejad, M. Mashkour, Bacterial cellulose-polyaniline nanobiocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell. J. Power Sources 325, 322–328 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.063

    CAS  Article  Google Scholar 

  32. 32.

    N. Muthukumar, G. Thilagavathi, Development and characterization of electrically conductive polyaniline coated fabrics. Indian J. Chem. Technol. 19(6), 434–441 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully thank Institute of Research Management & Innovation (IRMI) Universiti Teknologi MARA (UiTM), Malaysia, for funding this project under GIP (600-IRMI 5/3/GIP (010/2019) – Electronic and Antibacterial Properties of Polyaniline Coated on Polyester Fabrics.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zaidah Zainal Ariffin or Mohd Muzamir Mahat.

Electronic supplementary material

ESM 1

(PDF 178 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Omar, S.N.I., Zainal Ariffin, Z., Zakaria, A. et al. Electrically conductive fabric coated with polyaniline: physicochemical characterisation and antibacterial assessment. emergent mater. 3, 469–477 (2020). https://doi.org/10.1007/s42247-019-00062-4

Download citation

Keywords

  • Polyaniline
  • Conductive fabrics
  • Phytic acid
  • Antibacterial properties