Skip to main content
Log in

Ceramic and porous framework metal silicates and phosphates from molecular precursors: an ever-evolving ambient synthesis approach

  • Review Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Metal oxides, silicates and phosphates represent three of the major classes of materials which have been extensively investigated owing to their enormous application potential. Although these materials are found to occur widely in nature, the last few decades have seen a lot of activity in the laboratory synthesis of these zeolites. Our research group has been investigating aspects of molecular silicates and phosphates by carrying out appropriate chemistries in an organic medium, as against the hydrothermal conditions. Subsequent to the forays in using silanols (silanetriols RSi(OH)3, in particular) as primary building blocks in modelling zeolitic materials, we turned our attention to a thermally labile diester of phosphoric acid, viz. di-tert-butylphosphate, as a means to prepare a multitude of discrete and polymeric metal organophosphates which cleanly decomposed to nanoscopic ceramic metal phosphates at temperatures as low as 300 °C. By switching over to a bulky monoaryl ester of phosphoric acid, viz. 2,6-diisopropylphenyl phosphate, it has been possible to build several 0-D cage structures which resemble the D4R, D6R and D8R (and even other less common) secondary building blocks of zeolites. The clusters possessing D4R architecture were further investigated for their framework forming capabilities using hydrogen bonding and covalent-coordinate bonding interactions. This article is a compilation of contributions from our laboratory with some historical perspective and hence not considered an exhaustive review of the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. E.M. Flanigen, R. Broach, S. Wilson, Zeolites in industrial separation and catalysis. Chapter 1, 1–26 (2010)

    Google Scholar 

  2. A. Crönstedt, Kongl. Svenska Vetenskaps Acadademiens Handlingar 17, 120 (1756)

  3. A. Damour, Ueber das Bleigummi und thonerdeballiges phosphorsaures Bleioxyd von Huelgoat. J. Prakt. Chem. 21, 126–127 (1840)

    Article  Google Scholar 

  4. F. Grandjean, Etüde optique de l'absorption des vapeurs lourdes par certaines zeolithes. Compt. Rend. 149, 866 (1909)

    Google Scholar 

  5. O. Weigel, E. Steinhoff, Adsorption of organic liquid vapors by chabazite. Z. Kristallogr 61, 125–154 (1925)

    CAS  Google Scholar 

  6. J. McBain, The Sorption of Gases and Vapours by Solids (Rutledge & Sons, London, 1932)

    Google Scholar 

  7. R.M. Barrer, 33. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. J. Chem. Soc. (Resumed) 127–132 (1948)

  8. R.M. Milton, Molecular Sieve Adsorbents, in, Google Patents, 1959, US2882243A

  9. E.M. Flanigen, J. Bennett, R. Grose, J. Cohen, R. Patton, R. Kirchner, J. Smith, Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271, 512 (1978)

    Article  CAS  Google Scholar 

  10. S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, E.M. Flanigen, Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J. Am. Chem. Soc.;(United States) 104, (1982)

  11. C. Kresge, M. Leonowicz, W.J. Roth, J. Vartuli, J. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992)

  12. M. Roberts, G. Sankar, J. Thomas, R. Jones, H. Du, J. Chen, W. Pang, R. Xu, Synthesis and structure of a layered titanosilicate catalyst with five-coordinate titanium. Nature 381, 401 (1996)

    Article  CAS  Google Scholar 

  13. H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal–Organic Frameworks, in, ACS Publications, 2012

  14. G. Maurin, C. Serre, A. Cooper, G. Férey, The new age of MOFs and of their porous-related solids. Chem. Soc. Rev. 46, 3104–3107 (2017)

    Article  CAS  Google Scholar 

  15. C. Baerlocher, L.B. McCusker, D.H. Olson, Atlas of Zeolite Framework Types (Elsevier, 2007)

  16. R. Murugavel, A. Choudhury, M.G. Walawalkar, R. Pothiraja, C.N.R. Rao, Metal complexes of organophosphate esters and open-framework metal phosphates: Synthesis, structure, transformations, and applications. Chem. Rev. 108, 3549–3655 (2008)

    Article  CAS  Google Scholar 

  17. R. Murugavel, A. Voigt, M.G. Walawalkar, H.W. Roesky, Hetero-and metallasiloxanes derived from silanediols, disilanols, silanetriols, and trisilanols. Chem. Rev. 96, 2205–2236 (1996)

    Article  CAS  Google Scholar 

  18. R. Murugavel, V. Chandrasekhar, A. Voigt, H.W. Roesky, H.-G. Schmidt, M. Noltemeyer, New lipophilic air-stable silanetriols: First example of an x-ray crystal structure of a silanetriol with Si-N bonds. Organometallics 14, 5298–5301 (1995)

    Article  CAS  Google Scholar 

  19. R. Murugavel, V. Chandrasekhar, H.W. Roesky, Discrete silanetriols: building blocks for three-dimensional metallasiloxanes. Acc. Chem. Res. 29, 183–189 (1996)

    Article  CAS  Google Scholar 

  20. R. Murugavel, P. Davis, V.S. Shete, Reactivity studies, structural characterization, and thermolysis of cubic titanosiloxanes: precursors to titanosilicate materials which catalyze olefin epoxidation. Inorg. Chem. 42, 4696–4706 (2003)

    Article  CAS  Google Scholar 

  21. A. Voigt, R. Murugavel, M.L. Montero, H. Wessel, F.Q. Liu, H.W. Roesky, I. Usón, T. Albers, E. Parisini, Soluble molecular titanosilicates. Angew. Chem. Int. Ed. Engl. 36, 1001–1003 (1997)

    Article  CAS  Google Scholar 

  22. V. Chandrasekhar, R. Murugavel, A. Voigt, H.W. Roesky, H.-G. Schmidt, M. Noltemeyer, Cyclic and polyhedral aluminosiloxanes with Al2Si2O4, Al4Si2O6, and Al4Si4O12 frameworks: X-ray crystal structures of [(2, 4, 6-Me3C6H2) N (SiMe3) Si (OAlBu-i)(OAl (Bu-i) 2) O] 2 and [(2, 6-Me2C6H3) N (SiMe3) SiO3Al⊙ C4H8O2] 4. Organometallics 15, 918–922 (1996)

    Article  CAS  Google Scholar 

  23. G. Prabusankar, R. Murugavel, R.J. Butcher, Synthesis, spectral studies, and structural characterization of a new organosilanetriol, its amine complexes, and a surface Lewis basic cubic aluminosilicate. Organometallics 24, 2124–2128 (2005)

    Article  CAS  Google Scholar 

  24. M.L. Montero, A. Voigt, M. Teichert, I. Usón, H.W. Roesky, Soluble aluminosilicates with frameworks of minerals. Angew. Chem. Int. Ed. Engl. 34, 2504–2506 (1995)

    Article  CAS  Google Scholar 

  25. N. Winkhofer, H.W. Roesky, M. Noltemeyer, W.T. Robinson, [tBuSiO (ReO4)] 4, a Model Compound for Metal Oxides on Silicate Surfaces—Synthesis from the Stable Triol tBuSi (OH) 3 and Re2O7. Angew. Chem. Int. Ed. Engl. 31, 599–601 (1992)

    Article  Google Scholar 

  26. U. Ritter, N. Winkhofer, R. Murugavel, A. Voigt, D. Stalke, H.W. Roesky, Cubic group 13 heterosiloxanes with four Co3 (CO) 9C cluster units as substituents: Novel soluble model compounds for synthetic zeolites showing catalytic activity in hydroformylation reactions. J. Am. Chem. Soc. 118, 8580–8587 (1996)

    Article  CAS  Google Scholar 

  27. V. Chandrasekhar, R. Boomishankar, S. Nagendran, Recent developments in the synthesis and structure of organosilanols. Chem. Rev. 104, 5847–5910 (2004)

    Article  CAS  Google Scholar 

  28. M.G. Walawalkar, R. Murugavel, H.W. Roesky, H.-G. Schmidt, The first molecular borophosphonate cage: synthesis, spectroscopy, and single-crystal X-ray structure. Organometallics 16, 516–518 (1997)

    Article  CAS  Google Scholar 

  29. M.G. Walawalkar, R. Murugavel, H.W. Roesky, H.-G. Schmidt, Syntheses, spectroscopy, structures, and reactivity of neutral cubic group 13 molecular phosphonates. Inorg. Chem. 36, 4202–4207 (1997)

    Article  CAS  Google Scholar 

  30. M.G. Walawalkar, S. Horchler, S. Dietrich, D. Chakraborty, H.W. Roesky, M. Schäfer, H.-G. Schmidt, G.M. Sheldrick, R. Murugavel, Novel organic-soluble molecular titanophosphonates with cage structures comparable to titanium-containing silicates. Organometallics 17, 2865–2868 (1998)

    Article  CAS  Google Scholar 

  31. M.G. Walawalkar, R. Murugavel, A. Voigt, H.W. Roesky, H.-G. Schmidt, A novel molecular gallium phosphonate cage containing sandwiched lithium ions: synthesis, structure, and reactivity. J. Am. Chem. Soc. 119, 4656–4661 (1997)

    Article  CAS  Google Scholar 

  32. M.R. Mason, Molecular phosphates, phosphonates, phosphinates, and arsonates of the group 13 elements. J. Clust. Sci. 9, 1–23 (1998)

    Article  CAS  Google Scholar 

  33. J. Goura, V. Chandrasekhar, Molecular metal phosphonates. Chem. Rev. 115, 6854–6965 (2015)

    Article  CAS  Google Scholar 

  34. A.K. McMullen, T.D. Tilley, A.L. Rheingold, S.J. Geib, Preparation and characterization of the monomeric copper (II) siloxide complex Cu [OSi (OCMe3) 3] 2 (py) 2. Inorg. Chem. 28, 3772–3774 (1989)

    Article  CAS  Google Scholar 

  35. A.K. McMullen, T.D. Tilley, A.L. Rheingold, S.J. Geib, Trialkoxysiloxy complexes of nickel. Molecular structures of Na3 (. mu. 3-I){Ni [. mu. 3-OSi (O-tert-Bu) 3] 3I}. cntdot. 0.5 THF. cntdot. 0.5 C5H12 and {(. eta. 3-C3H5) Ni [. mu. 2-OSi (O-tert-Bu) 3]} 2. Inorg. Chem. 29, 2228–2232 (1990)

    Article  CAS  Google Scholar 

  36. R. Rulkens, J.L. Male, K.W. Terry, B. Olthof, A. Khodakov, A.T. Bell, E. Iglesia, T.D. Tilley, Vanadyl tert-Butoxy Orthosilicate, OV [OSi (O t Bu) 3] 3: a model for isolated vanadyl sites on silica and a precursor to vanadia− silica xerogels. Chem. Mater. 11, 2966–2973 (1999)

    Article  CAS  Google Scholar 

  37. M.P. Coles, C.G. Lugmair, K.W. Terry, T.D. Tilley, Titania− silica materials from the molecular precursor Ti [OSi (O t Bu) 3] 4: selective epoxidation catalysts. Chem. Mater. 12, 122–131 (2000)

    Article  CAS  Google Scholar 

  38. K.L. Fujdala, T.D. Tilley, New vanadium tris (tert-butoxy) siloxy complexes and their thermolytic conversions to vanadia− silica materials. Chem. Mater. 14, 1376–1384 (2002)

    Article  CAS  Google Scholar 

  39. J. Jarupatrakorn, T.D. Tilley, Silica-supported, single-site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst structure. J. Am. Chem. Soc. 124, 8380–8388 (2002)

    Article  CAS  Google Scholar 

  40. Y.S. Choi, E.G. Moschetta, J.T. Miller, M. Fasulo, M.J. McMurdo, R.M. Rioux, T.D. Tilley, Highly dispersed Pd-SBA15 materials from tris (tert-butoxy) siloxy complexes of Pd (II). ACS Catal. 1, 1166–1177 (2011)

    Article  CAS  Google Scholar 

  41. J.P. Dombrowski, G.R. Johnson, A.T. Bell, T.D. Tilley, Ga [OSi (OtBu) 3] 3· THF, a thermolytic molecular precursor for high surface area gallium-containing silica materials of controlled dispersion and stoichiometry. Dalton Trans. 45, 11025–11034 (2016)

    Article  CAS  Google Scholar 

  42. K.W. Terry, C.G. Lugmair, T.D. Tilley, Tris (tert-butoxy) siloxy complexes as single-source precursors to homogeneous zirconia-and hafnia-silica materials. An alternative to the sol-gel method. J. Am. Chem. Soc. 119, 9745–9756 (1997)

    Article  CAS  Google Scholar 

  43. P. Vishnoi, R. Murugavel, Chapter 7 in Molecular Materials: Preparation, Characterization, and Applications (eds. S. Malhotra, B. Prasad, J. Fraxedas), CRC Press 2017, pp. 153-188.

  44. A. Zwierzak, M. Kluba, Organophosphorus esters—I: t-butyl as protecting group in phosphorylation via nucleophilic displacement. Tetrahedron 27, 3163–3170 (1971)

    Article  CAS  Google Scholar 

  45. C.G. Lugmair, T.D. Tilley, A.L. Rheingold, Di (tert-butyl) phosphate complexes of aluminum: Precursors to aluminum phosphate xerogels and thin films. Chem. Mater. 11, 1615–1620 (1999)

    Article  CAS  Google Scholar 

  46. R. Murugavel, N. Gogoi, Rings, chains and cages in metal phosphate chemistry: the interdependence and possible interconversion between various structural forms. J. Organomet. Chem. 695, 916–924 (2010)

    Article  CAS  Google Scholar 

  47. K.L. Fujdala, T.D. Tilley, An efficient, single-source molecular precursor to silicoaluminophosphates. J. Am. Chem. Soc. 123, 10133–10134 (2001)

    Article  CAS  Google Scholar 

  48. C.G. Lugmair, T.D. Tilley, Di-tert-butyl phosphate complexes of titanium. Inorg. Chem. 37, 1821–1826 (1998)

    Article  CAS  Google Scholar 

  49. R. Murugavel, M. Sathiyendiran, M.G. Walawalkar, Di-tert-butyl phosphate complexes of cobalt (II) and zinc (II) as precursors for ceramic M (PO3) 2 and M2P2O7 materials: synthesis, spectral characterization, structural studies, and role of auxiliary ligands. Inorg. Chem. 40, 427–434 (2001)

    Article  CAS  Google Scholar 

  50. R. Murugavel, M. Sathiyendiran, Di-tert-butylphosphate complexes of Mn (II) and Cu (II) as single-source precursors for metal phosphate materials. Chem. Lett. 30, 84–85 (2001)

    Article  Google Scholar 

  51. M. Sathiyendiran, R. Murugavel, Di-tert-butyl phosphate as synthon for metal phosphate materials via single-source coordination polymers [M (dtbp) 2] n (M= Mn, Cu) and [Cd (dtbp) 2 (H2O)] n (dtbp-H=(t BuO) 2P(O) OH). Inorg. Chem. 41, 6404–6411 (2002)

    Article  CAS  Google Scholar 

  52. R. Pothiraja, M. Sathiyendiran, R.J. Butcher, R. Murugavel, Cobalt and manganese nets via their wires: facile transformation in metal− diorganophosphates. Inorg. Chem. 43, 7585–7587 (2004)

    Article  CAS  Google Scholar 

  53. R. Murugavel, M. Walawalkar, M. Dan, H. Roesky, C. Rao, Transformations of molecules and secondary building units to materials: a bottom-up approach. Acc. Chem. Res. 37, 763–774 (2004)

    Article  CAS  Google Scholar 

  54. R. Murugavel, M. Sathiyendiran, R. Pothiraja, R.J. Butcher, O–H Bond elongation in co-ordinated water through intramolecular P [double bond, length as m-dash] O⋯ H–O bonding.‘Snap-shots’ in phosphate ester hydrolysis. Chem. Commun. 2546–2547 (2003)

  55. R. Pothiraja, M. Sathiyendiran, R.J. Butcher, R. Murugavel, Non-interpenetrating transition metal diorganophosphate 2-dimensional rectangular grids from their 1-dimensional wires: Structural transformations under mild conditions. Inorg. Chem. 44, 6314–6323 (2005)

    Article  CAS  Google Scholar 

  56. R. Murugavel, M. Sathiyendiran, R. Pothiraja, M.G. Walawalkar, T. Mallah, E. Riviére, Monomeric, tetrameric, and polymeric copper di-tert-butyl phosphate complexes containing pyridine ancillary ligands. Inorg. Chem. 43, 945–953 (2004)

    Article  CAS  Google Scholar 

  57. R. Pothiraja, M. Sathiyendiran, A. Steiner, R. Murugavel, Copper phosphates and phosphinates with pyridine/pyrazole alcohol co-ligands: synthesis and structure. Inorg. Chim. Acta 372, 347–352 (2011)

    Article  CAS  Google Scholar 

  58. H.S. Ahn, T.D. Tilley, Electrocatalytic water oxidation at neutral pH by a nanostructured co (PO3) 2 anode. Adv. Funct. Mater. 23, 227–233 (2013)

    Article  CAS  Google Scholar 

  59. K. Sharma, R. Antony, A.C. Kalita, S.K. Gupta, P. Davis, R. Murugavel, Complex structural landscape of titanium Organophosphonates: isolation of structurally related Ti4, Ti5, and Ti6 species and mechanistic insights. Inorg. Chem. 56, 12848–12858 (2017)

    Article  CAS  Google Scholar 

  60. R. Murugavel, S. Shanmugan, Assembling metal phosphonates in the presence of monodentate-terminal and bidentate-bridging pyridine ligands. Use of non-covalent and covalent-coordinate interactions to build polymeric metal–phosphonate architectures. Dalton Trans. 5358–5367 (2008)

  61. R. Murugavel, S. Shanmugan, Seeking tetrameric transition metal phosphonate with a D4R core and organising it into a 3-D supramolecular assembly. Chem. Commun. 1257–1259 (2007)

  62. V. Chandrasekhar, A. Dey, T. Senapati, E.C. Sañudo, Distorted cubic tetranuclear vanadium (IV) phosphonate cages: Double-four-ring (D4R) containing transition metal ion phosphonate cages. Dalton Trans. 41, 799–803 (2012)

    Article  CAS  Google Scholar 

  63. A. Clearfield, Metal phosphonate chemistry. Prog. Inorg. Chem., 371–510 (1997)

  64. G.M. Kosolapoff, C.K. Arpke, R.W. Lamb, H. Reich, Structural effects in reactions of organophosphorus compounds. I. Reactions of phosphorus oxychloride with hindered phenols. J. Chem. Soc. C: Organ. 815–818 (1968)

  65. R. Murugavel, S. Kuppuswamy, R. Boomishankar, A. Steiner, Hierarchical structures built from a molecular zinc phosphate core. Angew. Chem. Int. Ed. 45, 5536–5540 (2006)

    Article  CAS  Google Scholar 

  66. R. Murugavel, S. Kuppuswamy, N. Gogoi, A. Steiner, J. Bacsa, R. Boomishankar, K.e.G. Suresh, Controlling the structure of manganese (II) phosphates by the choice and ratio of organophosphate and auxiliary ligands. Chem. Asian J. 4, 143–153 (2009)

  67. S.K. Gupta, S. Kuppuswamy, J.P. Walsh, E.J. McInnes, R. Murugavel, Discrete and polymeric cobalt organophosphates: isolation of a 3-D cobalt phosphate framework exhibiting selective CO 2 capture. Dalton Trans. 44, 5587–5601 (2015)

    Article  CAS  Google Scholar 

  68. R. Murugavel, S. Kuppuswamy, A.N. Maity, M.P. Singh, Di-, tri-, tetra-, and hexanuclear copper (II) mono-organophosphates: structure and nuclearity dependence on the choice of phosphorus substituents and auxiliary N-donor ligands. Inorg. Chem. 48, 183–192 (2008)

    Article  CAS  Google Scholar 

  69. R. Murugavel, S. Kuppuswamy, N. Gogoi, A. Steiner, Assembling discrete D4R zeolite SBUs through noncovalent interactions. 3. Mediation by butanols and 1, 2-Bis (dimethylamino) ethane. Inorg. Chem. 49, 2153–2162 (2010)

    Article  CAS  Google Scholar 

  70. R. Murugavel, S. Kuppuswamy, N. Gogoi, R. Boomishankar, A. Steiner, Noncovalent synthesis of hierarchical zinc phosphates from a single Zn4O12P4 double-four-ring building block: dimensionality control through the choice of auxiliary ligands. Chem. Eur. J. 16, 994–1009 (2010)

    Article  CAS  Google Scholar 

  71. A.C. Kalita, N. Gogoi, R. Jangir, S. Kuppuswamy, M.G. Walawalkar, R. Murugavel, Ab initio chemical synthesis of designer metal phosphate frameworks at ambient conditions. Inorg. Chem. 53, 8959–8969 (2014)

    Article  CAS  Google Scholar 

  72. R. Jangir, A.C. Kalita, D. Kaleeswaran, S.K. Gupta, R. Murugavel, A [4+2] condensation strategy to imine-linked single-crystalline zeolite-like zinc phosphate frameworks. Chem. Eur. J. 24, 6178–6190 (2018)

    Article  CAS  Google Scholar 

  73. H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, A.P. Côté, R.E. Taylor, M. O'keeffe, O.M. Yaghi, Designed synthesis of 3D covalent organic frameworks. Science 316, 268–272 (2007)

    Article  CAS  Google Scholar 

  74. A.C. Kalita, S.K. Gupta, R. Murugavel, A solvent switch for the stabilization of multiple hemiacetals on an inorganic platform: role of supramolecular interactions. Chem. Eur. J. 22, 6863–6875 (2016)

    Article  CAS  Google Scholar 

  75. A.C. Kalita, R. Murugavel, Fluoride ion sensing and caging by a preformed molecular D4R zinc phosphate heterocubane. Inorg. Chem. 53, 3345–3353 (2014)

    Article  CAS  Google Scholar 

  76. A.C. Kalita, C. Roch-Marchal, R. Murugavel, Cationic D4R zinc phosphate–anionic polyoxometalate hybrids: synthesis, spectra, structure and catalytic studies. Dalton Trans. 42, 9755–9763 (2013)

    Article  CAS  Google Scholar 

  77. A.C. Kalita, K. Sharma, R. Murugavel, Pseudopolymorphism leading and two different supramolecular aggregations in a phosphate monoester: role of a rare water-dimer. CrystEngComm 16, 51–55 (2014)

    Article  CAS  Google Scholar 

  78. S.K. Gupta, G.A. Bhat, R. Murugavel, Lanthanide organophosphate spiro polymers: synthesis, structure, and magnetocaloric effect in the gadolinium polymer. Inorg. Chem. 56, 9071–9083 (2017)

    Article  CAS  Google Scholar 

  79. S.K. Gupta, S.K. Langley, K. Sharma, K.S. Murray, R. Murugavel, Pentanuclear lanthanide mono-organophosphates: synthesis, structure, and magnetism. Inorg. Chem. 56, 3946–3960 (2017)

    Article  CAS  Google Scholar 

  80. A.A. Dar, G.A. Bhat, R. Murugavel, Dimensionality alteration and intra-versus inter-SBU void encapsulation in zinc phosphate frameworks. Inorg. Chem. 55, 5180–5190 (2016)

    Article  CAS  Google Scholar 

  81. Y. Wu, S. Shaker, F. Brivio, R. Murugavel, P.D. Bristowe, A.K. Cheetham, [Am] Mn (H2POO) 3: a new family of hybrid perovskites based on the hypophosphite ligand. J. Am. Chem. Soc. 139, 16999–17002 (2017)

    Article  CAS  Google Scholar 

  82. A.A. Dar, S.K. Sharma, R. Murugavel, Is single-4-ring the most basic but elusive secondary building unit that transforms to larger structures in zinc phosphate chemistry? Inorg. Chem. 54, 4882–4894 (2015)

    Article  CAS  Google Scholar 

  83. S.K. Gupta, A.A. Dar, T. Rajeshkumar, S. Kuppuswamy, S.K. Langley, K.S. Murray, G. Rajaraman, R. Murugavel, Discrete {Gd III 4 M}(M= Gd III or co II) pentanuclear complexes: A new class of metal-organophosphate molecular coolers. Dalton Trans. 44, 5961–5965 (2015)

    Article  CAS  Google Scholar 

  84. A.A. Dar, S. Sen, S.K. Gupta, G.N. Patwari, R. Murugavel, Octanuclear zinc phosphates with hitherto unknown cluster architectures: ancillary ligand and solvent assisted structural transformations thereof. Inorg. Chem. 54, 9458–9469 (2015)

    Article  CAS  Google Scholar 

  85. S.K. Gupta, A.C. Kalita, A.A. Dar, S. Sen, G.N. Patwari, R. Murugavel, Elusive double-eight-ring zeolitic secondary building unit. J. Am. Chem. Soc. 139, 59–62 (2017)

Download references

Acknowledgements

It is a pleasure to thank all my present and past co-workers (PhD students, postdoctoral fellows, MSc project students and other short-term project students), who have contributed to the work described in this article. I thank Dr. D. Kaleeswaran for his help in the preparation of this manuscript.

Funding

This work was financially supported by DAE and DST (SERB) over the years (many grants).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramaswamy Murugavel.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Based on the lecture delivered at ICEAN 2018, Newcastle, NSW, Australia, October 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugavel, R. Ceramic and porous framework metal silicates and phosphates from molecular precursors: an ever-evolving ambient synthesis approach. emergent mater. 2, 273–294 (2019). https://doi.org/10.1007/s42247-019-00054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-019-00054-4

Keywords

Navigation