3D printing of polymeric tissue engineering scaffolds using open-source fused deposition modeling

Abstract

Open-source printing is a field where the cost of printing additive manufacturing products is cheaper due to more economical software and parts to construct a product including those of tissue engineering scaffolds. In this manuscript, fused deposition modeling (FDM) is used as the main avenue of open-source use in 3D printing of tissue engineering scaffolds. Additive manufacturing enables the researchers to build 3D products with interior and exterior architectures precisely defined and produced using open-access software which dictates the printer to print the models or the data obtained by various imaging techniques. In this way, implants to suit the dimensions and the mechanical and physicochemical properties needed for an artificial extracellular matrix can be produced. The main limitations are the limited number of printing materials and their unknown compositions which make their biocompatibility an issue. With the recent developments of in-house filament production, this limitation is also being overcome.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    R. Langer, J.P. Vacanti, Tissue engineering. Science. 260, 920–926 (1993)

    CAS  Google Scholar 

  2. 2.

    F. Asghari, M. Samiei, K. Adibkia, A. Akbarzadeh, S. Davaran, Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif. Cells Nanomed. Biotechnol. 45(2), 185–192 (2017)

    CAS  Google Scholar 

  3. 3.

    C. Zhou, K. Yang, K. Wang, X. Pei, Z. Dong, Y. Hong, X. Zhang, Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds. Mater. Des. 109, 415–424 (2016)

    Google Scholar 

  4. 4.

    N.G. Rim, C.S. Shin, H. Shin, Current approaches to electrospun nanofibers for tissue engineering. Biomed. Mater. 8(1), 014102 (2013)

    Google Scholar 

  5. 5.

    Y.F. Liu, X.T. Dong, F.D. Zhu, Adv. Mater. Res. 102–104, 550–554 (2010)

    Google Scholar 

  6. 6.

    N. Mohan, P. Senthil, S. Vinodh, N. Jayanth, A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys. Prototyp. 12(1), 47–59 (2017)

    Google Scholar 

  7. 7.

    K.S. Boparai, R. Singh, H. Singh, Development of rapid tooling using fused deposition modeling: a review. Rapid Prototyp. J. 22(2), 281–299 (2016)

    Google Scholar 

  8. 8.

    B. Zhang, B. Seong, V.D. Nguyen, D. Byun, 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J. Micromech. Microeng. 26(2), 025015 (2016)

    Google Scholar 

  9. 9.

    J.M. Pearce, C. Morris Blair, K.J. Laciak, R. Andrews, A. Nosrat, I. Zelenika-Zovko, J. Sustain. Dev. 3(4), 17 (2012)

    Google Scholar 

  10. 10.

    S. Bose, M. Roy, A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30(10), 546–554 (2012)

    CAS  Google Scholar 

  11. 11.

    U. Jammalamadaka, K. Tappa, Recent Advances in Biomaterials for 3D Printing and Tissue Engineering. J. Funct. Biomater. 9(1), 22 (2018)

    Google Scholar 

  12. 12.

    C. Casavola, A. Cazzato, V. Moramarco, C. Pappalettere, Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater. Des. 90, 453–458 (2016)

    Google Scholar 

  13. 13.

    L.M. Galantucci, F. Lavecchia, G. Percoco, Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling. CIRP Ann. Manuf. Technol. 59(1), 247–250 (2010)

    Google Scholar 

  14. 14.

    D. Pranzo, P. Larizza, D. Filippini, G. Percoco, Extrusion-based 3D printing of microfluidic devices for chemical and biomedical applications: a topical review. Micromachines 9(8), 374 (2018)

    Google Scholar 

  15. 15.

    L.M. Galantucci, I. Bodi, J. Kacani, F. Lavecchia, Analysis of dimensional performance for a 3D open-source printer based on fused deposition modeling technique. Procedia CIRP 28, 82–87 (2015)

    Google Scholar 

  16. 16.

    A. Brown, D. De Beer, P. Conradie, Development of a stereolithography (stl) input and computer numerical control (cnc) output algorithm for an entry-level 3-d printer. S. Afr. J. Ind. Eng 25, 39–47 (2014)

    Google Scholar 

  17. 17.

    B.K. Gu, D.J. Choi, S.J. Park, M.S. Kim, C.M. Kang, C.H. Kim, 3-dimensional bioprinting for tissue engineering applications. Biomater. Res. 20(1), 12 (2016)

    Google Scholar 

  18. 18.

    I. Abudayyeh, B. Gordon, M.M. Ansari, K. Jutzy, L. Stoletniy, A. Hilliard, J. Interv, Cardiol. 31(3), 375–383 (2018)

    Google Scholar 

  19. 19.

    R. Singh, J.P. Davim, Additive Manufacturing: Applications and Innovations, 1st edn. (CRC Press, NW, 2018)

    Google Scholar 

  20. 20.

    J. Torres, M. Cole, A. Owji, Z. DeMastry, A.P. Gordon, An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Prototyp. J. 22(2), 387–404 (2016)

    Google Scholar 

  21. 21.

    J. Suganuma, H. Alexander, J. Appl. Biomater. 4(1), 13–27 (2005)

    Google Scholar 

  22. 22.

    M. Guvendiren, J. Molde, R.M.D. Soares, J. Kohn, Designing Biomaterials for 3D Printing. ACS Biomater. Sci. Eng. 2(10), 1679–1693 (2016)

    CAS  Google Scholar 

  23. 23.

    E.J. McCullough, V.K. Yadavalli, Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. J. Mater. Process. Technol. 213(6), 947–954 (2013)

    CAS  Google Scholar 

  24. 24.

    S. Chen, J. Lu, J. Feng, 3D-printable ABS blends with improved scratch resistance and balanced mechanical performance. Ind. Eng. Chem. Res. 57(11), 3923–3931 (2018)

    CAS  Google Scholar 

  25. 25.

    F. Liu, C. Vyas, G. Poologasundarampillai, I. Pape, S. Hinduja, W. Mirihanage, P. Bartolo, Structural evolution of PCL during melt extrusion 3D printing. Macromol. Mater. Eng. 303(2), 1700494 (2018)

    Google Scholar 

  26. 26.

    W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang, J. Zhao, Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials. 8(9), 5834–5846 (2015)

    CAS  Google Scholar 

  27. 27.

    M. Vaezi, S. Yang, Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys. Prototyp. 10(3), 123–135 (2015)

    Google Scholar 

  28. 28.

    B.C. Tellis, J.A. Szivek, C.L. Bliss, D.S. Margolis, R.K. Vaidyanathan, P. Calvert, Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater. Sci. Eng. C 28(1), 171–178 (2008)

    CAS  Google Scholar 

  29. 29.

    F.S. Senatov, K.V. Niaza, M.Y. Zadorozhnyy, A.V. Maksimkin, S.D. Kaloshkin, Y.Z. Estrin, Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J. Mech. Behav. Biomed. Mater. 57, 139–148 (2016)

    CAS  Google Scholar 

  30. 30.

    G.C. Anzalone, B. Wijnen, J.M. Pearce, Multi-material additive and subtractive prosumer digital fabrication with a free and open-source convertible delta RepRap 3-D printer. Rapid Prototyp. J. 21(5), 506–519 (2015)

    Google Scholar 

  31. 31.

    A. Goyanes, J. Wang, A. Buanz, R. Martínez-Pacheco, R. Telford, S. Gaisford, A.W. Basit, 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics. Mol. Pharm. 12(11), 4077–4084 (2015)

    CAS  Google Scholar 

  32. 32.

    A.J.L. Morgan, L.H. San Jose, W.D. Jamieson, J.M. Wymant, B. Song, P. Stephens, D.A. Barrow, O.K. Castell, Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication. PLoS One 11(4), e0152023 (2016)

    Google Scholar 

  33. 33.

    H.N. Chia, B.M. Wu, Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9(1), 4 (2015)

    Google Scholar 

  34. 34.

    L.D. Albrecht, S.W. Sawyer, P. Soman, 3D Print. Addit. Manuf. 3, 106–112 (2016)

    Google Scholar 

  35. 35.

    J.E. Trachtenberg, P.M. Mountziaris, J.S. Miller, M. Wettergreen, F.K. Kasper, A.G. Mikos, Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering. J. Biomed. Mater. Res. A 102(12), 4326–4335 (2014)

    Google Scholar 

  36. 36.

    J.P. Temple, D.L. Hutton, B.P. Hung, P.Y. Huri, C.A. Cook, R. Kondragunta, W.L. Grayson, Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. A 102(12), 4317–4325 (2014)

    Google Scholar 

  37. 37.

    A. Liu, G.H. Xue, M. Sun, H.F. Shao, C.Y. Ma, Q. Gao, Z. Gou, S.G. Yan, Y.M. Liu, Y. He, Sci. Rep. 6, 1–13 (2016)

    Google Scholar 

  38. 38.

    J. De Ciurana, L. Serenó, È. Vallès, Selecting process parameters in RepRap additive manufacturing system for PLA scaffolds manufacture. Procedia CIRP. 5, 152–157 (2013)

    Google Scholar 

  39. 39.

    W. Kosorn, M. Sakulsumbat, P. Uppanan, P. Kaewkong, S. Chantaweroad, J. Jitsaard, K. Sitthiseripratip, W. Janvikul, J Biomed Mater Res B Appl Biomater 105, 1141–1150 (2016)

    Google Scholar 

  40. 40.

    U. Ritz, R. Gerke, H. Götz, S. Stein, P.M. Rommens, Int. J. Mol. Sci. 18(12), 2596 (2017)

    Google Scholar 

  41. 41.

    A. Grémare, V. Guduric, R. Bareille, V. Heroguez, S. Latour, N. L’heureux, J.C. Fricain, S. Catros, D. Le Nihouannen, Characterization of printed PLA scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A 106(4), 887–894 (2018)

    Google Scholar 

  42. 42.

    G.S. Diogo, V.M. Gaspar, I.R. Serra, R. Fradique, I.J. Correia, Manufacture of β-TCP/alginate scaffolds through a Fab@home model for application in bone tissue engineering. Biofabrication 6, 25001 (2014)

    CAS  Google Scholar 

  43. 43.

    J.C. Boga, S.P. Miguel, D. de Melo-Diogo, A.G. Mendonça, R.O. Louro, I.J. Correia, In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration. Colloids Surf. B: Biointerfaces 165, 207–218 (2018)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vasif Hasirci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alagoz, A.S., Hasirci, V. 3D printing of polymeric tissue engineering scaffolds using open-source fused deposition modeling. emergent mater. 3, 429–439 (2020). https://doi.org/10.1007/s42247-019-00048-2

Download citation

Keywords

  • Open-source 3D printing
  • Fused deposition modeling (FDM)
  • Tissue engineering
  • Polymeric filament
  • Scaffold