Skip to main content

Advertisement

Log in

Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Integrating efficient energy harvesting materials in to soft, flexible, and eco-friendly substrates could yield significant breakthroughs in wearable and flexible electronics. Substantial advances are emerged in fabricating devices which can conform to irregular surfaces in addition to integrating piezoelectric polymer nanocomposites in to mechanical generators and bendable electronics. Here, we present a tri-phasic filler combination of one-dimensional titanium dioxide (TiO2) nanotubes, two-dimensional reduced graphene oxide, and three-dimensional strontium titanate (SrTiO3), introduced in to a semi-crystalline polymer, poly(vinylidene fluoride-co-hexafluoropropylene). Simple mixing method was adopted for the composite fabrication after ensuring a high interaction between the various fillers. The prepared films were tested for their piezoelectric responses and mechanical stretchability. The results showed that the piezoelectric constant has increased due to the change in the filler concentration and reached a value of 7.52 pC/N at 1:2 filler combination. The output voltage obtained for the same filler composition was about 10.5 times that of the voltage generated by the neat polymer. Thus, we propose integration of these materials in fabricating energy conversion devices that can be useful in flexible and wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Tashiro, in Ferroelectric Polymers, ed. by H. S. Nalwa. (Dekker, New York, 1995)

    Google Scholar 

  2. T. Furukawa, Phase Transit. 18, 143 (1983)

    Article  Google Scholar 

  3. A.V. Bune, V.M. Fridkin, S. Ducharme, L.M. Blinov, S.P. Palto, A.V. Sorokin, S.G. Yudin, A. Zlatkin, Two-dimensional ferroelectric films. Nature 391, 874–877 (1998)

    Article  CAS  Google Scholar 

  4. J.I. Scheinbeim, in Poly(vinylidene fluorides) in Polymer Data Handbook, ed. by J. E. Mark. (Oxford University Press, New York, 1999)

    Google Scholar 

  5. A.J. Lovinger, Ferroelectric Polymers. Science 220(4602), 1115–1121 (1983)

    Article  CAS  Google Scholar 

  6. A.J. Lovinger, in Developments in Crystalline polymers, ed. by D. C. Bassett, vol 1 (Applied Science Publishes, London, 1981), p. 195

    Google Scholar 

  7. J.S. Humphrey, R. Amen-Sanayec, in Encyclopedia of Polymer Science and Technology, ed. by H. F. Mark. (Wiley, Hoboken, 2003), p. 4

    Google Scholar 

  8. L. Blinov, V. Fridkin, S. Palto, A. Bune, P. Dowben, S. Ducharme, Two-dimensional ferroelectrics. Physics-Uspekhi 43, 243–257 (2000)

    Article  CAS  Google Scholar 

  9. V.S. Bystrov, E.V. Paramonova, I.K. Bdikin, A.V. Bystrova, R.C. Pullar, A.L. Kholkin, Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF). J. Mol. Model. 19, 3591–3602 (2013)

    Article  CAS  Google Scholar 

  10. G.H. Kim, S.M. Hong, Y. Seo, Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys. Chem. Chem. Phys. 11, 10506–10512 (2009)

    Article  CAS  Google Scholar 

  11. P. Sajkiewicz, A. Wasiak, Z. Goclowski, Phase transitions during stretching of poly(vinylidene fluoride). Eur. Polym. J. 35, 423–429 (1999)

    Article  CAS  Google Scholar 

  12. J. Scheinbeim, C. Nakafuku, B.A. Newman, K.D. Pae, High‐pressure crystallization of poly(vinylidene fluoride). J. Appl. Phys. 50, 4399–4405 (1979)

    Article  CAS  Google Scholar 

  13. R.L. Miller, J. Raison, J. Polym. Sci. Polym. Phys. 14, 2325 (1976)

    Article  CAS  Google Scholar 

  14. J.P. Luongo, Far-infrared spectra of piezoelectric polyvinylidene fluoride. J. Polym. Sci. Part A-2: Polym. Phys. 10, 1119–1123 (1972)

    Article  CAS  Google Scholar 

  15. S. Manna, A.K. Nandi, J. Phys. Chem. C 111, 14670 (2007)

    Article  CAS  Google Scholar 

  16. Y.N. Hao, K. Bi, S. O'Brien, X.X. Wang, J. Lombardi, F. Pearsall, W.L. Li, M. Lei, Y. Wu, L.T. Li, Interface structure, precursor rheology and dielectric properties of BaTiO3/PVDF–hfp nanocomposite films prepared from colloidal perovskite nanoparticles. RSC Adv. 7(52), 32886–32892 (2017)

    Article  CAS  Google Scholar 

  17. L.F. Malmonge, J.A. Malmonge, W.K. Sakamoto, Study of pyroelectric activity of PZT/PVDF-HFP composite. Mater. Res. 6(4), 469–473 (2003)

    Article  CAS  Google Scholar 

  18. L. Xie, X. Huang, K. Yang, S. Li, Jiang P. J. Mater. Chem. A. 2(15), 5244 (2014)

    Article  CAS  Google Scholar 

  19. K. Prabakaran, S. Mohanty, S.K. Nayak, Influence of surface modified TiO2 nanoparticles on dielectric properties of PVdF–HFP nanocomposites. J. Mater. Sci. Mater. Electron. 25(10), 4590–4602 (2014)

    Article  CAS  Google Scholar 

  20. R.K. Layek, S. Samanta, D.P. Chatterjee, A.K. Nandi, Physical and mechanical properties of poly(methyl methacrylate) -functionalized graphene/poly(vinylidine fluoride) nanocomposites: Piezoelectric β polymorph formation. Polymer 51, 5846–5856 (2010)

    Article  CAS  Google Scholar 

  21. J. Yu, P. Jiang, C. Wu, L. Wang, X. Wu, Polym. Compos. 32, 1483 (2011)

    Article  CAS  Google Scholar 

  22. J. Buckley, P. Cebe, D. Cherdack, J. Crawford, B.S. Ince, M. Jenkins, Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer 47, 2411–2422 (2006)

    Article  CAS  Google Scholar 

  23. V. Bhavanasi, V. Kumar, K. Parida, J. Wang, P.S. Lee, ACS Appl. Mater. Interfaces 8(1), 521 (2015)

    Article  Google Scholar 

  24. L. Wu, W. Yuan, N. Hu, Z. Wang, C. Chen, J. Qiu, J. Ying, Y. Li, Improved piezoelectricity of PVDF-HFP/carbon black composite films. J. Phys. D. Appl. Phys. 47(13), 135302 (2014)

    Article  Google Scholar 

  25. K.K. Sadasivuni, D. Ponnamma, S. Thomas, Y. Grohens, Evolution from graphite to graphene elastomer composites. Prog. Polym. Sci. 39(4), 749–780 (2014)

    Article  CAS  Google Scholar 

  26. D. Ponnamma, Q. Guo, I. Krupa, M.A. Al-Maadeed, K.T. Varughese, S. Thomas, K.K. Sadasivuni, Graphene and graphitic derivative filled polymer composites as potential sensors. Phys. Chem. Chem. Phys. 17(6), 3954–3981 (2015)

    Article  CAS  Google Scholar 

  27. M.V. Silibin, V.S. Bystrov, D.V. Karpinsky, N. Nasani, G. Goncalves, I.M. Gavrilin, A.V. Solnyshkin, P.A.A.P. Marques, B. Singh, I. Bdikin, Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films. Appl. Surf. Sci. 421, 42–51 (2017)

    Article  CAS  Google Scholar 

  28. V.S. Bystrov, I.K. Bdikin, M. Silibin, D. Karpinsky, S. Kopyl, E.V. Paramonova, G. Goncalves, Molecular modeling of the piezoelectric properties of ferroelectric composites containing polyvinylidene fluoride (PVDF) and either graphene or graphene oxide. J. Mol. Model. 23(128), 128 (2017)

    Article  Google Scholar 

  29. V.S. Bystrov, I.K. Bdikin, M.V. Silibin, D.V. Karpinsky, S.A. Kopyl, G. Goncalves, A.V. Sapronova, T. Kuznetsova, V.V. Bystrova, Graphene/graphene oxide and polyvinylidene fluoride polymer ferroelectric composites for multifunctional applications. Ferroelectrics 509, 124–142 (2017)

    Article  CAS  Google Scholar 

  30. M.A. Rahman, B.C. Lee, D.T. Phan, G.S. Chung, Smart Mater. Struct. 22(8), 085017 (2013)

    Article  Google Scholar 

  31. D. Ponnamma, P.P. Vijayan, M.A. Al-Maadeed, Mater. Des. 117, 203 (2017)

    Article  CAS  Google Scholar 

  32. H. Parangusan, D. Ponnamma, M.A. Al-Maadeed, Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci. Rep. 8(1), 754 (2018)

    Article  Google Scholar 

  33. H. Parangusan, D. Ponnamma, M.A. Al-Maadeed, Flexible tri-layer piezoelectric nanogenerator based on PVDF-HFP/Ni-doped ZnO nanocomposites. RSC Adv. 7(79), 50156–50165 (2017)

    Article  CAS  Google Scholar 

  34. M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-warthan, W. Tremel, Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A 3(37), 18753–18808 (2015)

    Article  CAS  Google Scholar 

  35. K. Müller, E. Bugnicourt, M. Latorre, M. Jorda, Y. Echegoyen Sanz, J.M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz, G. Pérez, Nano 7(4), 74 (2017)

    Google Scholar 

  36. G. Wang, B. Wang, J. Park, J. Yang, X. Shen, J. Yao, Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon 47(1), 68–72 (2009)

    Article  CAS  Google Scholar 

  37. M. Miyauchi, Thin Films of Single-Crystalline SrTiO3Nanorod Arrays and Their Surface Wettability Conversion. J. Phys. Chem. C 111(33), 12440–12445 (2007)

    Article  CAS  Google Scholar 

  38. S.K. Karan, D. Mandal, B.B. Khatua, Nano 7(24), 10655 (2015)

    CAS  Google Scholar 

  39. J. Xue, L. Wu, N. Hu, J. Qiu, C. Chang, S. Atobe, H. Fukunaga, T. Watanabe, Y. Liu, H. Ning, J. Li, Nano 4(22), 7250 (2012)

    Google Scholar 

  40. A. Al-Saygh, D. Ponnamma, M.A. AlMaadeed, P.P. Vijayan, A. Karim, M.K. Hassan, Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers 9(2), 33 (2017)

    Article  Google Scholar 

  41. L. Huang, C. Lu, F. Wang, L. Wang, Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Adv. 4(85), 45220–45229 (2014)

    Article  CAS  Google Scholar 

  42. F.C. Chiu, Mater. Chem. Phys. 143(2), 681 (2014)

    Article  CAS  Google Scholar 

  43. N. Soin, D. Boyer, K. Prashanthi, S. Sharma, A.A. Narasimulu, J. Luo, T.H. Shah, E. Siores, T. Thundat, Exclusive self-aligned β-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem. Commun. 51(39), 8257–8260 (2015)

    Article  CAS  Google Scholar 

  44. S.K. Karan, A.K. Das, R. Bera, S. Paria, A. Maitra, N.K. Shrivastava, B.B. Khatua, Effect of γ-PVDF on enhanced thermal conductivity and dielectric property of Fe-rGO incorporated PVDF based flexible nanocomposite film for efficient thermal management and energy storage applications. RSC Adv. 6(44), 37773–37783 (2016)

    Article  CAS  Google Scholar 

  45. K.K. Sadasivuni, D. Ponnamma, B. Kumar, M. Strankowski, R. Cardinaels, P. Moldenaers, S. Thomas, Y. Grohens, Comp. Sci. Technol. 104, 18 (2014)

    Article  CAS  Google Scholar 

  46. K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A. AlMaadeed, S.K. Pasha, R.R. Deshmukh, K. Chidambaram, Mater. Chem. Phys. 186, 188 (2017)

    Article  CAS  Google Scholar 

  47. K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, S.K. Pasha, M.A. AlMaadeed, K. Chidambaram, Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J. Polym. Res. 23(8), 159 (2016)

    Article  Google Scholar 

  48. M. Mrlík, S. Leadenham, M.A. AlMaadeed, A. Erturk, Proc. SPIE 9799, Active and Passive Smart Structures and Integrated Systems 2016, 979923 (2016)

    Google Scholar 

  49. S.K. Karan, R. Bera, S. Paria, A.K. Das, S. Maiti, A. Maitra, B.B. Khatua, Adv. Energy Mater. 6(20) (2016)

    Article  Google Scholar 

Download references

Funding

This publication was made possible by NPRP grant 6-282-2-119 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepalekshmi Ponnamma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnamma, D., Erturk, A., Parangusan, H. et al. Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting. emergent mater. 1, 55–65 (2018). https://doi.org/10.1007/s42247-018-0007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-018-0007-z

Keywords

Navigation