Abstract
The high efficiency of Ce addition in grain refinement of δ-ferrite in a cast Fe–4 wt.%Si alloy was verified. In order to further understand the solute effect of Ce on the grain refinement of δ-ferrite, the conventional directional solidification technique, which enabled to freeze the solid–liquid interface to room temperature, was used to investigate the interfacial morphology and solute redistribution in the liquid at the front of the interface, together with thermodynamic calculation of the equilibrium partition coefficients of Ce and Si in Fe–4 wt.%Si–Ce system using the Equilib module and the FsStel database in FactSage software system. Metallographic examination using a laser scanning confocal microscope showed a transition of the solid–liquid interface from planar to cellular in the Fe–4 wt.%Si alloy after adding 0.0260 wt.% Ce during the directional solidification experiment. Further, electron probe microanalysis revealed an enhanced segregation of Si solute in the liquid at the front of the solid–liquid interface due to the Ce addition. This solute segregation is considered as the cause of planar to cellular interface transition, which resulted from the creation of constitutional supercooling zone. Thermodynamic calculation indicated that Ce also segregated at the solid–liquid interface and the Ce addition had negligible effect on the equilibrium partition coefficient of Si. It is reasonable to consider that the contribution of Ce to the grain refinement of δ-ferrite in the cast Fe–4 wt.%Si alloy as a solute was marginal.
This is a preview of subscription content, access via your institution.





References
- [1]
F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, W.S. Hwang, Materials 9 (2016) 417.
- [2]
L.M. Wang, Q. Lin, L.J. Yue, L. Liu, F. Guo, F.M. Wang, J. Alloy. Compd. 451 (2008) 534–537.
- [3]
L.A. Smirnov, V.A. Rovnushkin, A.S. Oryshchenko, G.Y. Kalinin, V.G. Milyuts, Metallurgist 59 (2016) 1053–1061.
- [4]
L.A. Smirnov, V.A. Rovnushkin, A.S. Oryshchenko, G.Y. Kalinin, V.G. Milyuts, Metallurgist 60 (2016) 38–46.
- [5]
Y.D. Li, C.J. Liu, C.L. Li, M.F. Jiang, J. Iron Steel Res. Int. 22 (2015) 457–463.
- [6]
H. Li, Y.C. Yu, X. Ren, S.H. Zhang, S.B. Wang, J. Iron Steel Res. Int. 24 (2017) 925–934.
- [7]
M.A. Hamidzadeh, M. Meratian, A. Saatchi, Mater. Sci. Eng. A 571 (2013) 193–198.
- [8]
Q.R. Zhang, J.Y. Li, Y.L. Chen, W. Li, B.B. Zhong, Ironmak. Steelmak. (2020) https://doi.org/10.1080/03019233.2020.1762386.
- [9]
Y.G. Zhu, Y. Liu, Z.L. Liu, W.D. Liu, J. Rare Earths 22 (2004) 282–287.
- [10]
Y.P. Ji, M.X. Zhang, H.P. Ren, Metals 8 (2018) 884.
- [11]
R. Tuttle, Int. J. Metalcast. 6 (2012) 51–65.
- [12]
M.X. Guo, H. Suito, ISIJ Int. 39 (1999) 722–729.
- [13]
H. Li, A. Mclean, J.W. Rutter, I.D. Sommerville, Metall. Trans. B 19 (1988) 383–395.
- [14]
S.H. Zhang, Y.C. Yu, S.B. Wang, H. Li, J. Rare Earths 35 (2017) 518–524.
- [15]
Y.P. Ji, Y.M. Li, M.X. Zhang, H.P. Ren, Metall. Mater. Trans. A 50 (2019) 1787–1794.
- [16]
J.Z. Gao, P.X. Fu, H.W. Liu, D.Z. Li, Metals 5 (2015) 383–394.
- [17]
A.Q. Wang, M. Li, D.Q. Ma, Q.J. Wu, J.P. Xie, Kem. Ind. 65 (2016) 11–16.
- [18]
L.N. Bartlett, B.R. Avila, Int. J. Metalcast. 10 (2016) 401–420.
- [19]
A. Cibula, J. Inst. Met. 76 (1949–1950) 321–360.
- [20]
S.H. Davis, Theory of solidification, Cambridge University Press, Cambridge, UK, 2001.
- [21]
D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Acta Mater. 59 (2011) 4907–4921.
- [22]
Y. Hou, Z.Q. Zhang, W.D. Xuan, J. Wang, J.B. Yu, Z.M. Ren, Acta Metall. Sin. (Engl. Lett.) 31 (2018) 681–691.
- [23]
Z.R. Feng, J. Shen, W. Wang, L.S. Wang, J.F. Zhang, Y.J. Du, H.Z. Fu, Metall. Mater. Trans. A 44 (2013) 640–649.
- [24]
M. Li, J.M. Li, Q. Zheng, G. Wang, M.X. Zhang, Metall. Mater. Trans. A 49 (2018) 2235–2247.
- [25]
Y.P. Ji, Y.M. Li, M.X. Zhang, W. Qu, T.X. Zhao, H.P. Ren, Metall. Mater. Trans. A 51 (2020) 1707–1718.
- [26]
M.H. Burden, J.D. Hunt, J. Cryst. Growth 22 (1974) 99–108.
- [27]
W.L. Wang, C. Ji, S. Luo, M.Y. Zhu, Metall. Mater. Trans. B 49 (2018) 200–212.
- [28]
P.K. Sung, D.R. Poirier, Metall. Mater. Trans. A 30 (1999) 2173–2181.
- [29]
A. Kagawa, K. Iwata, A.A. Nofal, T. Okamoto, Mater. Sci. Technol. 1 (1985) 678–683.
- [30]
H.B. Chen, M.J. Long, D.F. Chen, Y.W. Huang, L.T. Gui, Y.G. Ma, H.M. Duan, Rare Metal Mater. Eng. 47 (2018) 2093–2099.
- [31]
H.B. Chen, M.J. Long, D.F. Chen, Y.W. Huang, L.T. Gui, Y.G. Ma, H.M. Duan, J. Iron Steel Res. 29 (2017) 637–642.
- [32]
L.J. Yue, L.L. Wang, L.M. Wang, Chin. Rare Earths 35 (2014) No. 6, 20–26.
- [33]
R.W. Cahn, Binary alloy phase diagrams, 2nd ed., ASM International, Materials Park, Ohio, USA, 1990.
- [34]
M.A. Easton, M. Qian, A. Prasad, D.H. StJohn, Curr. Opin. Solid State Mater. Sci. 20 (2016) 13–24.
- [35]
F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M.X. Zhang, Metall. Mater. Trans. A 46 (2015) 505–515.
- [36]
Z.L. Liu, F. Wang, D. Qiu, J.A. Taylor, M.X. Zhang, Metall. Mater. Trans. A 44 (2013) 4025–4030.
- [37]
Z. Fan, F. Gao, L. Zhou, S.Z. Lu, Acta Mater. 152 (2018) 248–257.
Acknowledgements
The authors are very grateful to the funding support from the National Natural Science Foundation of China (Grant Nos. 51761034 and 51261018) and the Natural Science Foundation of Inner Mongolia in China (Grant Nos. 2017MS0512 and 2020BS05018).
Author information
Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Ji, Yp., Zhang, Mx., Hou, Y. et al. Effect of Ce on solute redistribution in liquid ahead of solid–liquid interface during solidification of Fe–4 wt.%Si alloy. J. Iron Steel Res. Int. (2021). https://doi.org/10.1007/s42243-020-00552-4
Received:
Revised:
Accepted:
Published:
Keywords
- Ce
- Fe–4 wt.%Si alloy
- Solute redistribution
- Directional solidification
- Electron probe microanalysis
- Thermodynamic calculation