Effect of Ce on solute redistribution in liquid ahead of solid–liquid interface during solidification of Fe–4 wt.%Si alloy

Abstract

The high efficiency of Ce addition in grain refinement of δ-ferrite in a cast Fe–4 wt.%Si alloy was verified. In order to further understand the solute effect of Ce on the grain refinement of δ-ferrite, the conventional directional solidification technique, which enabled to freeze the solid–liquid interface to room temperature, was used to investigate the interfacial morphology and solute redistribution in the liquid at the front of the interface, together with thermodynamic calculation of the equilibrium partition coefficients of Ce and Si in Fe–4 wt.%Si–Ce system using the Equilib module and the FsStel database in FactSage software system. Metallographic examination using a laser scanning confocal microscope showed a transition of the solid–liquid interface from planar to cellular in the Fe–4 wt.%Si alloy after adding 0.0260 wt.% Ce during the directional solidification experiment. Further, electron probe microanalysis revealed an enhanced segregation of Si solute in the liquid at the front of the solid–liquid interface due to the Ce addition. This solute segregation is considered as the cause of planar to cellular interface transition, which resulted from the creation of constitutional supercooling zone. Thermodynamic calculation indicated that Ce also segregated at the solid–liquid interface and the Ce addition had negligible effect on the equilibrium partition coefficient of Si. It is reasonable to consider that the contribution of Ce to the grain refinement of δ-ferrite in the cast Fe–4 wt.%Si alloy as a solute was marginal.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. [1]

    F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, W.S. Hwang, Materials 9 (2016) 417.

    Article  Google Scholar 

  2. [2]

    L.M. Wang, Q. Lin, L.J. Yue, L. Liu, F. Guo, F.M. Wang, J. Alloy. Compd. 451 (2008) 534–537.

    Article  Google Scholar 

  3. [3]

    L.A. Smirnov, V.A. Rovnushkin, A.S. Oryshchenko, G.Y. Kalinin, V.G. Milyuts, Metallurgist 59 (2016) 1053–1061.

    Article  Google Scholar 

  4. [4]

    L.A. Smirnov, V.A. Rovnushkin, A.S. Oryshchenko, G.Y. Kalinin, V.G. Milyuts, Metallurgist 60 (2016) 38–46.

    Article  Google Scholar 

  5. [5]

    Y.D. Li, C.J. Liu, C.L. Li, M.F. Jiang, J. Iron Steel Res. Int. 22 (2015) 457–463.

    Article  Google Scholar 

  6. [6]

    H. Li, Y.C. Yu, X. Ren, S.H. Zhang, S.B. Wang, J. Iron Steel Res. Int. 24 (2017) 925–934.

    Article  Google Scholar 

  7. [7]

    M.A. Hamidzadeh, M. Meratian, A. Saatchi, Mater. Sci. Eng. A 571 (2013) 193–198.

    Article  Google Scholar 

  8. [8]

    Q.R. Zhang, J.Y. Li, Y.L. Chen, W. Li, B.B. Zhong, Ironmak. Steelmak. (2020) https://doi.org/10.1080/03019233.2020.1762386.

  9. [9]

    Y.G. Zhu, Y. Liu, Z.L. Liu, W.D. Liu, J. Rare Earths 22 (2004) 282–287.

    Google Scholar 

  10. [10]

    Y.P. Ji, M.X. Zhang, H.P. Ren, Metals 8 (2018) 884.

    Article  Google Scholar 

  11. [11]

    R. Tuttle, Int. J. Metalcast. 6 (2012) 51–65.

    Article  Google Scholar 

  12. [12]

    M.X. Guo, H. Suito, ISIJ Int. 39 (1999) 722–729.

    Article  Google Scholar 

  13. [13]

    H. Li, A. Mclean, J.W. Rutter, I.D. Sommerville, Metall. Trans. B 19 (1988) 383–395.

    Article  Google Scholar 

  14. [14]

    S.H. Zhang, Y.C. Yu, S.B. Wang, H. Li, J. Rare Earths 35 (2017) 518–524.

    Article  Google Scholar 

  15. [15]

    Y.P. Ji, Y.M. Li, M.X. Zhang, H.P. Ren, Metall. Mater. Trans. A 50 (2019) 1787–1794.

    Article  Google Scholar 

  16. [16]

    J.Z. Gao, P.X. Fu, H.W. Liu, D.Z. Li, Metals 5 (2015) 383–394.

    Article  Google Scholar 

  17. [17]

    A.Q. Wang, M. Li, D.Q. Ma, Q.J. Wu, J.P. Xie, Kem. Ind. 65 (2016) 11–16.

    Article  Google Scholar 

  18. [18]

    L.N. Bartlett, B.R. Avila, Int. J. Metalcast. 10 (2016) 401–420.

    Article  Google Scholar 

  19. [19]

    A. Cibula, J. Inst. Met. 76 (1949–1950) 321–360.

  20. [20]

    S.H. Davis, Theory of solidification, Cambridge University Press, Cambridge, UK, 2001.

    Google Scholar 

  21. [21]

    D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Acta Mater. 59 (2011) 4907–4921.

    Article  Google Scholar 

  22. [22]

    Y. Hou, Z.Q. Zhang, W.D. Xuan, J. Wang, J.B. Yu, Z.M. Ren, Acta Metall. Sin. (Engl. Lett.) 31 (2018) 681–691.

  23. [23]

    Z.R. Feng, J. Shen, W. Wang, L.S. Wang, J.F. Zhang, Y.J. Du, H.Z. Fu, Metall. Mater. Trans. A 44 (2013) 640–649.

    Article  Google Scholar 

  24. [24]

    M. Li, J.M. Li, Q. Zheng, G. Wang, M.X. Zhang, Metall. Mater. Trans. A 49 (2018) 2235–2247.

    Article  Google Scholar 

  25. [25]

    Y.P. Ji, Y.M. Li, M.X. Zhang, W. Qu, T.X. Zhao, H.P. Ren, Metall. Mater. Trans. A 51 (2020) 1707–1718.

    Article  Google Scholar 

  26. [26]

    M.H. Burden, J.D. Hunt, J. Cryst. Growth 22 (1974) 99–108.

    Article  Google Scholar 

  27. [27]

    W.L. Wang, C. Ji, S. Luo, M.Y. Zhu, Metall. Mater. Trans. B 49 (2018) 200–212.

    Article  Google Scholar 

  28. [28]

    P.K. Sung, D.R. Poirier, Metall. Mater. Trans. A 30 (1999) 2173–2181.

    Article  Google Scholar 

  29. [29]

    A. Kagawa, K. Iwata, A.A. Nofal, T. Okamoto, Mater. Sci. Technol. 1 (1985) 678–683.

    Article  Google Scholar 

  30. [30]

    H.B. Chen, M.J. Long, D.F. Chen, Y.W. Huang, L.T. Gui, Y.G. Ma, H.M. Duan, Rare Metal Mater. Eng. 47 (2018) 2093–2099.

    Google Scholar 

  31. [31]

    H.B. Chen, M.J. Long, D.F. Chen, Y.W. Huang, L.T. Gui, Y.G. Ma, H.M. Duan, J. Iron Steel Res. 29 (2017) 637–642.

    Google Scholar 

  32. [32]

    L.J. Yue, L.L. Wang, L.M. Wang, Chin. Rare Earths 35 (2014) No. 6, 20–26.

    Google Scholar 

  33. [33]

    R.W. Cahn, Binary alloy phase diagrams, 2nd ed., ASM International, Materials Park, Ohio, USA, 1990.

  34. [34]

    M.A. Easton, M. Qian, A. Prasad, D.H. StJohn, Curr. Opin. Solid State Mater. Sci. 20 (2016) 13–24.

    Article  Google Scholar 

  35. [35]

    F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M.X. Zhang, Metall. Mater. Trans. A 46 (2015) 505–515.

    Article  Google Scholar 

  36. [36]

    Z.L. Liu, F. Wang, D. Qiu, J.A. Taylor, M.X. Zhang, Metall. Mater. Trans. A 44 (2013) 4025–4030.

    Article  Google Scholar 

  37. [37]

    Z. Fan, F. Gao, L. Zhou, S.Z. Lu, Acta Mater. 152 (2018) 248–257.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the funding support from the National Natural Science Foundation of China (Grant Nos. 51761034 and 51261018) and the Natural Science Foundation of Inner Mongolia in China (Grant Nos. 2017MS0512 and 2020BS05018).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ming-xing Zhang or Hui-ping Ren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, Yp., Zhang, Mx., Hou, Y. et al. Effect of Ce on solute redistribution in liquid ahead of solid–liquid interface during solidification of Fe–4 wt.%Si alloy. J. Iron Steel Res. Int. (2021). https://doi.org/10.1007/s42243-020-00552-4

Download citation

Keywords

  • Ce
  • Fe–4 wt.%Si alloy
  • Solute redistribution
  • Directional solidification
  • Electron probe microanalysis
  • Thermodynamic calculation