Effect of isothermal temper embrittlement and subsequent hydrogen embrittlement on tensile properties of 2.25Cr–1Mo–0.25V base metal and welded metal

Abstract

2.25Cr–1Mo–0.25V base metal (BM) and welded metal (WM) with different temper embrittlement states were obtained by isothermal temper embrittlement test. The ductile–brittle transition temperature and the carbide size of temper embrittled 2.25Cr–1Mo–0.25V BM and WM increased with the isothermal tempering time. The increase in temper embrittlement time leads to a decrease in yield strength (YS) and ultimate tensile strength (UTS). Hydrogen embrittlement (HE) can decrease the ductility and increase YS and UTS of the material. The hydrogen embrittlement sensitivity and microstructure analysis both show a combined effect of HE and temper embrittlement. The deeper the temper embrittlement, the more sensitive the material to HE. When the hydrogen content in the material is low, the WM is less susceptible to HE due to its welding defects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. [1]

    H. Xu, X. Xia, L. Hua, Y. Sun, Y. Dai, Eng. Fail. Anal. 19 (2012) 43–50.

    Article  Google Scholar 

  2. [2]

    Y. Song, Z.L. Han, M.Y. Chai, B. Yang, Y.L. Liu, G.Y. Cheng, Y. Li, S. Ai, Materials 11 (2018) 788.

    Article  Google Scholar 

  3. [3]

    G.P. Tiwari, A. Bose, J.K. Chakravartty, S.L. Wadekar, M.K. Totlani, R.N. Arya, R.K. Fotedar, Mater. Sci. Eng. A 286 (2000) 269–281.

    Article  Google Scholar 

  4. [4]

    C.M. Younes, A.M. Steele, J.A. Nicholson, C.J. Barnett, Int. J. Hydrogen Energy 38 (2013) 4864–4876.

    Article  Google Scholar 

  5. [5]

    Y. Yagodzinskyy, E. Malitckii, T. Saukkonen, H. Hänninen, Scripta Mater. 67 (2012) 931–934.

    Article  Google Scholar 

  6. [6]

    Y.J. Hong, C.S. Zhou, Y.Y. Zheng, J.Y. Zheng, L. Zhang, X.Y. Chen, Int. J. Hydrogen Energy 44 (2019) 22576–22583.

    Article  Google Scholar 

  7. [7]

    A.J. Slifka, E.S. Drexler, N.E. Nanninga, Y.S. Levy, J.D. McColskey, R.L. Amaro, A.E. Stevenson, Corros. Sci. 78 (2014) 313–321.

    Article  Google Scholar 

  8. [8]

    T. Shinko, G. Hénaff, D. Halm, G. Benoit, G. Bilotta, M. Arzaghi, Int. J. Fatigue 121 (2019) 197–207.

    Article  Google Scholar 

  9. [9]

    T.E. García, C. Rodríguez, F.J. Belzunce, I.I. Cuesta, Mater. Sci. Eng. A 664 (2016) 165–176.

    Article  Google Scholar 

  10. [10]

    G. Manna, P. Castello, F. Harskamp, R. Hurst, B. Wilshire, Eng. Fract. Mech. 74 (2007) 956–968.

    Article  Google Scholar 

  11. [11]

    S. Matsuoka, H. Tanaka, N. Homma, Y. Murakami, Int. J. Fract. 168 (2011) 101–112.

    Article  Google Scholar 

  12. [12]

    J. Takahashi, K. Kawakami, Y. Kobayashi, T. Tarui, Scripta Mater. 63 (2010) 261–264.

    Article  Google Scholar 

  13. [13]

    C. Park, N. Kang, S. Liu, Corros. Sci. 128 (2017) 33–41.

    Article  Google Scholar 

  14. [14]

    H. Su, H. Toda, K. Shimizu, K. Uesugi, A. Takeuchi, Y. Watanabe, Acta Mater. 176 (2019) 96–108.

    Article  Google Scholar 

  15. [15]

    Q. Li, Y.Q. Hu, G.X. Cheng, Z.X. Zhang, X.W. Liang, in: Pressure Vessels and Piping Conference, ASME, San Antonio, Texas, USA, 2019, pp. PVP2019-93510, V001T01A075.

  16. [16]

    S.K. Dwivedi, M. Vishwakarma, Int. J. Hydrogen Energy 43 (2018) 21603–21616.

    Article  Google Scholar 

  17. [17]

    T. Sharma, S.K. Bonagani, N. Naveen Kumar, D. Harish, K.V. Mani Krishna, I. Samajdar, V. Kain, J. Nucl. Mater. 527 (2019) 151817.

  18. [18]

    Y. Murakami, T. Nomura, J. Watanabe, in: G. Sangdahl, M. Semchyshen (Eds.), Application of 2¼ Cr–1 Mo Steel for Thick-Wall Pressure Vessels, ASTM International, West Conshohocken, PA, USA, 1982, pp. 383–417.

  19. [19]

    J.Z. Tan, Y.J. Chao, Mater. Sci. Eng. A 405 (2005) 214–220.

    Article  Google Scholar 

  20. [20]

    T. Depover, K. Verbeken, Mater. Sci. Eng. A 675 (2016) 299–313.

    Article  Google Scholar 

  21. [21]

    J. Takahashi, K. Kawakami, Y. Kobayashi, Acta Mater. 153 (2018) 193–204.

    Article  Google Scholar 

  22. [22]

    S. Takagi, Y. Toji, ISIJ Int. 52 (2012) 329–331.

    Article  Google Scholar 

  23. [23]

    GB229–2007, Metallic materials-Charpy pendulum impact test method, China, 2007.

  24. [24]

    M. Okayasu, J. Motojima, Mater. Sci. Eng. A 790 (2020) 139418.

    Article  Google Scholar 

  25. [25]

    M. Koyama, E. Akiyama, K. Tsuzaki, Scripta Mater. 66 (2012) 947–950.

    Article  Google Scholar 

  26. [26]

    X.L. Zhang, C.Y. Zhou, J. Iron Steel Res. Int. 18 (2011) 47–51.

    Article  Google Scholar 

  27. [27]

    X. Zhang, C. Zhou, Mater. Sci. Eng. A 528 (2011) 4287–4291.

    Article  Google Scholar 

  28. [28]

    A.L. Cardenas, R.O. Silva, C.B. Eckstein, D.S. dos Santos, Int. J. Hydrogen Energy 43 (2018) 16400–16410.

    Article  Google Scholar 

  29. [29]

    Y.F. Wang, G.X. Cheng, M. Qin, Q. Li, Z.X. Zhang, K. Chen, Y. Li, H.J. Hu, W. Wu, J.X. Zhang, Int. J. Hydrogen Energy 42 (2017) 24549–24559.

    Article  Google Scholar 

  30. [30]

    B.A. Szost, R.H. Vegter, P.E.J. Rivera-Díaz-del-Castillo, Mater. Des. 43 (2013) 499–506.

    Article  Google Scholar 

  31. [31]

    V. Jayan, M.Y. Khan, M. Husain, Mater. Lett. 58 (2004) 2569–2573.

    Article  Google Scholar 

  32. [32]

    J.B. Chen, H.B. Liu, Z.Y. Pan, K. Shi, H.Q. Zhang, J.F. Li, Mater. Sci. Eng. A 622 (2015) 153–159.

    Article  Google Scholar 

  33. [33]

    T. Depover, K. Verbeken, Mater. Sci. Eng. A 669 (2016) 134–149.

    Article  Google Scholar 

  34. [34]

    X.K. Jin, L. Xu, W.C. Yu, K.F. Yao, J. Shi, M.Q. Wang, Corros. Sci. 166 (2020) 108421.

    Article  Google Scholar 

  35. [35]

    S. Park, C. Park, Y. Na, H.S. Kim, N. Kang, J. Alloy. Compd. 770 (2019) 222–228.

    Article  Google Scholar 

  36. [36]

    A. Turnbull, Int. J. Hydrogen Energy 40 (2015) 16961–16970.

    Article  Google Scholar 

  37. [37]

    H.J. Kang, J.S. Yoo, J.T. Park, S.T. Ahn, N. Kang, K.M. Cho, Mater. Sci. Eng. A 543 (2012) 6–11.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports of National Key R&D Program of China (No. 2018YFC0808800).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang-yu Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, Zp., Fu, W., Kong, Lr. et al. Effect of isothermal temper embrittlement and subsequent hydrogen embrittlement on tensile properties of 2.25Cr–1Mo–0.25V base metal and welded metal. J. Iron Steel Res. Int. (2021). https://doi.org/10.1007/s42243-020-00545-3

Download citation

Keywords

  • 2.25Cr–1Mo–0.25V base metal
  • Temper embrittlement
  • Hydrogen embrittlement
  • Mechanical property
  • Combined effect