New insight into fabrication of shaped Mg–X alloy foams with cellular structure via a gas release reaction powder metallurgy route


Shaped Mg alloy foams with closed-cell structure are highly interested for a great potential to be utilized in the fields where weight reduction is urgently required. A powder metallurgical method, namely gas release reaction powder metallurgy route to fabricate Mg–X (X=Al, Zn or Cu) alloy foams, was summarized. The principles on shaped Mg–X foams fabrication via the route were proposed. In addition, the effects of alloying elements, sintering treatment and foaming temperatures on fabrication of shaped Mg–X alloy foams were investigated experimentally. The results show that the key to ensure a successful foaming of Mg–X alloy foams is to add alloying metals alloyed with Mg to form lower melting (< 600 °C) intermetallic compounds by the initial sintering treatment. The foaming mechanism of Mg–X alloy foams also has been clarified, that is, the low-melting-point Mg-based intermetallic compounds melt first, and then reactions between the melt and CaCO3, a foaming agent, release CO gas to make the precursor foamed and finally shaped Mg–X alloy foam with a promising cellular structure is prepared. This route has been verified by successful fabrication on shaped Mg–Al, Mg–Zn and Mg–Cu foams with cellular structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. [1]

    L.P. Lefebvre, J. Banhart, D.C. Dunand, Adv. Eng. Mater. 10 (2008) 775–787.

    Google Scholar 

  2. [2]

    J. Banhart, Prog. Mater. Sci. 46 (2001) 559–632.

    Google Scholar 

  3. [3]

    L. Huang, H. Wang, D.H. Yang, F. Ye, Z.P. Lu, Intermetallics 28 (2012) 71–76.

    Google Scholar 

  4. [4]

    D. Schwingel, H.W. Seeliger, C. Vecchionacci, D. Alwes, J. Dittrich, Acta Astronautca 61 (2007) 326–330.

    Google Scholar 

  5. [5]

    J. Banhart, Int. J. Vehicle Des. 37 (2005) 114–139.

    Google Scholar 

  6. [6]

    R.A. Shenoi, J.F. Wellicome, Composite materials in maritime structures, Cambridge University Press, Cambridge, UK, 1993.

    Google Scholar 

  7. [7]

    H.P. Degischer, B. Kriszt, Handbook of cellular metals: production, processing, applications, Wiley-VCH, Bremen, Germany, 2002.

    Google Scholar 

  8. [8]

    X.T. Lu, Z.G. Zhang, H. Du, H.J. Luo, Y.L. Mu, J.R. Xu, J. Alloy. Compd. 797 (2019) 727–734.

    Google Scholar 

  9. [9]

    P.F. Li, N.V. Nguyen, H. Hao, Mater. Des. 89 (2016) 636–641.

    Google Scholar 

  10. [10]

    H. Zhuang, Y. Han, A. Feng, Mater. Sci. Eng. C 28 (2008) 1462–1468.

    Google Scholar 

  11. [11]

    C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, Mater. Lett. 58 (2004) 357–360.

    Google Scholar 

  12. [12]

    Z.G. Xu, J.W. Fu, T.J. Luo, Y.S. Yang, Mater. Des. 34 (2012) 40–44.

    Google Scholar 

  13. [13]

    D.H. Yang, S.R. Yang, H. Wang, A.B. Ma, J.H. Jiang, J.Q. Chen, D.L. Wang, Mater. Sci. Eng. A 527 (2010) 5405–5409.

    Google Scholar 

  14. [14]

    C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, Scripta Mater. 45 (2001) 1147–1153.

    Google Scholar 

  15. [15]

    E. Solórzano, M. Hirschmann, M.A. Rodriguez-Perez, C. Körner, J.A. de Saja, Mater. Lett. 62 (2008) 3960–3962.

    Google Scholar 

  16. [16]

    S.H. Park, Y.S. Um, C.H. Kum, B.Y. Hur, Colloids Surf. A Physicochem. Eng. Aspects 263 (2005) 280–289.

    Google Scholar 

  17. [17]

    E. Aghion, Y. Perez, Mater. Charact. 96 (2014) 78–83.

    Google Scholar 

  18. [18]

    G.Q. Lu, H. Hao, F.Y. Wang, X.G. Zhang, Trans. Nonferrous Met. Soc. China 23 (2013) 1832–1837.

    Google Scholar 

  19. [19]

    D.H. Yang, B.Y. Hur, S.R. Yang, J. Alloy. Compd. 461 (2008) 221–227.

    Google Scholar 

  20. [20]

    X.C. Xia, W.M. Zhao, Z.H. Wei, Z.G. Wang, Mater. Des. 42 (2012) 32–38.

    Google Scholar 

  21. [21]

    H. Wang, Y.M. Zhang, B.C. Zhou, D.H. Yang, Y. Wu, X.J. Liu, Z.P. Lu, J. Mater. Sci. Technol. 32 (2016) 509–514.

    Google Scholar 

  22. [22]

    L.Y. Aguirre-Perales, I.H. Jung, R.A.L. Drew, Acta Mater. 60 (2012) 759–769.

    Google Scholar 

  23. [23]

    X. Ding, Y. Liu, X. Chen, H.W. Zhang, Y.X. Li, Mater. Lett. 216 (2018) 38–41.

    Google Scholar 

  24. [24]

    H. Wang, D.F. Zhu, S. Hou, D.H. Yang, T.G. Nieh, Z.P. Lu, Mater. Des. 196 (2020) 109090.

    Google Scholar 

  25. [25]

    A.R. Kennedy, S. Asavavisitchai, Scripta Mater. 50 (2004) 115–119.

    Google Scholar 

  26. [26]

    D.H. Yang, J.Q. Chen, H. Wang, J.H. Jiang, A.B. Ma, Z.P. Lu, J. Mater. Sci. Technol. 31 (2015) 361–368.

    Google Scholar 

  27. [27]

    H. Lin, H.J. Luo, Z.G. Zhang, J.F. Ma, G.C. Yao, Mater. Lett. 188 (2017) 288–290.

    Google Scholar 

  28. [28]

    F. García-Moreno, J. Banhart, Colloids Surf. A Physicochem. Eng. Aspects 309 (2007) 264–269.

    Google Scholar 

  29. [29]

    K. Kitazono, Y. Takiguchi, Scripta Mater. 55 (2006) 501–504.

    Google Scholar 

  30. [30]

    A. Chethan, F. García-Moreno, N. Wanderka, B.S. Murty, J. Banhart, J. Mater. Sci. 46 (2011) 7806–7814.

    Google Scholar 

  31. [31]

    A. Irretier, J. Banhart, Acta Mater. 53 (2005) 4903–4917.

    Google Scholar 

  32. [32]

    N. Gupta, D.D. Luong, K. Cho, Metals 2 (2012) 238–252.

    Google Scholar 

  33. [33]

    T. Miyoshi, M. Itoh, S. Akiyama, A. Kitahara, Adv. Eng. Mater. 2 (2000) 179–183.

    Google Scholar 

  34. [34]

    D.H. Yang, Z.Y. Hu, W.P. Chen, J. Lu, J.Q. Chen, H. Wang, L. Wang, J.H. Jiang, A.B. Ma, J. Manuf. Process. 22 (2016) 290–296.

    Google Scholar 

  35. [35]

    D.H. Yang, J.Q. Chen, W.P. Chen, L. Wang, H. Wang, J.H. Jiang, A.B. Ma, J. Mater. Sci. Technol. 33 (2017) 1141–1146.

    Google Scholar 

  36. [36]

    D.H. Yang, S.S. Guo, J.Q. Chen, J. Lu, L. Wang, J.H. Jiang, A.B. Ma, J. Alloy. Compd. 766 (2018) 851–858.

    Google Scholar 

  37. [37]

    M. Mukherjee, F. García-Moreno, C. Jiménez, A. Rack, J. Banhart, Acta Mater. 131 (2017) 156–168.

    Google Scholar 

  38. [38]

    X.C. Xia, J.L. Feng, J. Ding, K.H. Song, X.W. Chen, W.M. Zhao, B. Liao, B.Y. Hur, Mater. Des. 74 (2015) 36–43.

    Google Scholar 

  39. [39]

    H.M. Helwig, F. García-Moreno, J. Banhart, J. Mater. Sci. 46 (2011) 5227–5236.

    Google Scholar 

  40. [40]

    A. Erryani, F. Pramuji, D. Annur, M.I. Amal, I. Kartika, IOP Conf. Ser. Mater. Sci. Eng. 202 (2017) 012028.

    Google Scholar 

  41. [41]

    A.A. Nayeb-Hashemi, J.B. Clark, Phase diagrams of binary magnesium alloys, ASM International, Metals Park, Ohio, USA, 1988.

    Google Scholar 

  42. [42]

    H. Okamoto, J. Phase Equilib. 15 (1994) 129–130.

    Google Scholar 

  43. [43]

    H. Okamoto, J. Phase Equilib. 13 (1992) 213–214.

    Google Scholar 

Download references


This research is supported by National Natural Science Foundation of China (No. 51971017), Science Funds for Creative Research Groups of China (51921001), Program for Changjiang Scholars and Innovative Research Team in University of China (IRT_14R05) and Projects of SKLAMM-USTB (2018Z-19). Dr. H. Wang appreciates the financial support from the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-18-004C1).

Author information



Corresponding authors

Correspondence to T. G. Nieh or Z. P. Lu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhu, D.F., Wu, Y. et al. New insight into fabrication of shaped Mg–X alloy foams with cellular structure via a gas release reaction powder metallurgy route. J. Iron Steel Res. Int. 28, 125–132 (2021).

Download citation


  • Mg–X alloy foam
  • Fabrication
  • Gas release reaction
  • Cellular structure
  • Sintering
  • Powder metallurgy