Aging behavior and precipitate characterization of Zn-rich Al–Zn–Mg–Cu alloys with various Mg and Cu contents

Abstract

Four Zn-rich Al–Zn–Mg–Cu alloys with different Mg and Cu contents were fabricated by spray deposition. The effects of Mg and Cu contents on the aging behaviors of the whole precipitation process of the alloys were systematically investigated. The results show that the primary precipitates in the under-aged and peak-aged alloys are GPII and η′ phases; no GPI zones were observed. During aging, the dissolution driving force of the precipitates increases with increasing Mg content; therefore, the volume fraction of precipitates in the grain interior and the area fraction of precipitates at the grain boundary increase obviously, which contributes to a considerable improvement in yield strength and decrease in plasticity of the high Mg content alloys. Cu content has no apparent effect on the size and volume fraction of precipitates. However, a higher Cu content can effectively prevent coarsening and transformation of precipitates, which is beneficial to maintain the peak aging state of the alloys. This research provides a basis for the composition optimization of the rapid-solidified highly alloying Al–Zn–Mg–Cu alloys.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. [1]

    A. Azarniya, A.K. Taheri, K.K. Taheri, J. Alloy. Compd. 781 (2019) 945–983.

    Article  Google Scholar 

  2. [2]

    T. Dursun, C. Soutis, Mater. Des. 56 (2014) 862–871.

    Article  Google Scholar 

  3. [3]

    I.N. Fridlyander, O.G. Senatorova, Mater. Sci. Forum 217–222 (1996) 1813–1818.

    Article  Google Scholar 

  4. [4]

    J. Yang, Z. Yu, Y. Li, H. Zhang, N. Zhou, Sci. Technol. Weld. Joining 23 (2018) 543–550.

    Article  Google Scholar 

  5. [5]

    G. Chen, X. Chang, J. Zhang, Y. Jin, C. Sun, Q. Chen, Z. Zhao, Met. Mater. Int. 26 (2020) 1574–1584.

    Article  Google Scholar 

  6. [6]

    K.S. Ghosh, N. Gao, M.J. Starink, Mater. Sci. Eng. A 552 (2012) 164–171.

    Article  Google Scholar 

  7. [7]

    F. Wang, B. Xiong, Y. Zhang, H. Liu, Z. Li, Q. Liu, Mater. Sci. Eng. A 518 (2009) 144–149.

    Article  Google Scholar 

  8. [8]

    P. Wang, H.C. Li, K.G. Prashanth, J. Eckert, S. Scudino, J. Alloy. Compd. 707 (2017) 287–290.

    Article  Google Scholar 

  9. [9]

    F. Jiang, H.S. Zurob, G.R. Purdy, H. Zhang, Mater. Charact. 117 (2016) 47–56.

    Article  Google Scholar 

  10. [10]

    F. Cao, J. Zheng, Y. Jiang, B. Chen, Y. Wang, T. Hu, Acta Mater. 164 (2019) 207–219.

    Article  Google Scholar 

  11. [11]

    G. Peng, K. Chen, S. Chen, H. Fang, Mater. Sci. Eng. A 641 (2015) 237–241.

    Article  Google Scholar 

  12. [12]

    M.J. Starink, S.C. Wang, Acta Mater. 51 (2003) 5131–5150.

    Article  Google Scholar 

  13. [13]

    P. Schloth, J.N. Wagner, J.L. Fife, A. Menzel, J.M. Drezet, H. Van Swygenhoven, Appl. Phys. Lett. 105 (2014) 101908.

    Article  Google Scholar 

  14. [14]

    G. Sha, A. Cerezo, Acta Mater. 52 (2004) 4503–4516.

    Article  Google Scholar 

  15. [15]

    K. Wen, Y. Fan, G. Wang, L. Jin, X. Li, Z. Li, Y. Zhang, B. Xiong, Mater. Des. 101 (2016) 16–23.

    Article  Google Scholar 

  16. [16]

    X. Xu, J. Zheng, Z. Li, R. Luo, B. Chen, Mater. Sci. Eng. A 691 (2017) 60–70.

    Article  Google Scholar 

  17. [17]

    H. Zhao, F. De Geuser, A. Kwiatkowski da Silva, A. Szczepaniak, B. Gault, D. Ponge, D. Raabe, Acta Mater. 156 (2018) 318–329.

    Article  Google Scholar 

  18. [18]

    J. Buha, R.N. Lumley, A.G. Crosky, Mater. Sci. Eng. A 492 (2008) 1–10.

    Article  Google Scholar 

  19. [19]

    Z. Li, B. Xiong, Y. Zhang, B. Zhu, F. Wang, H. Liu, Mater. Charact. 59 (2008) 278–282.

    Article  Google Scholar 

  20. [20]

    Y. Liu, D. Jiang, B. Li, T. Ying, J. Hu, Mater. Des. 60 (2014) 116–124.

    Article  Google Scholar 

  21. [21]

    E.M. Mazzer, C.R.M. Afonso, M. Galano, C.S. Kiminami, C. Bolfarini, J. Alloy. Compd. 579 (2013) 169–173.

    Article  Google Scholar 

  22. [22]

    M. Liu, B. Klobes, K. Maier, Scripta Mater. 64 (2011) 21–24.

    Article  Google Scholar 

  23. [23]

    L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg, Acta Mater. 49 (2001) 3443–3451.

    Article  Google Scholar 

  24. [24]

    A. Deschamps, Y. Bréchet, F. Livet, Mater. Sci. Technol. 15 (2013) 993–1000.

    Article  Google Scholar 

  25. [25]

    X. Fang, Y. Du, M. Song, K. Li, C. Jiang, J. Mater. Sci. 47 (2012) 8174–8187.

    Article  Google Scholar 

  26. [26]

    D. Liu, B. Xiong, F. Bian, Z. Li, X. Li, Y. Zhang, Q. Wang, G. Xie, F. Wang, H. Liu, Mater. Sci. Eng. A 639 (2015) 245–251.

    Article  Google Scholar 

  27. [27]

    C.R. Hutchinson, F. de Geuser, Y. Chen, A. Deschamps, Acta Mater. 74 (2014) 96–109.

    Article  Google Scholar 

  28. [28]

    G.J. Merchant, S.H. Davis, Acta Metall. Mater. 38 (1990) 2683–2693.

    Article  Google Scholar 

  29. [29]

    T. Xiao, Y. Deng, L. Ye, H. Lin, C. Shan, P. Qian, Mater. Sci. Eng. A 675 (2016) 280–288.

    Article  Google Scholar 

  30. [30]

    J.C. Werenskiold, A. Deschamps, Y. Bréchet, Mater. Sci. Eng. A 293 (2000) 267–274.

    Article  Google Scholar 

  31. [31]

    J.Z. Liu, J.H. Chen, X.B. Yang, S. Ren, C.L. Wu, H.Y. Xu, J. Zou, Scripta Mater. 63 (2010) 1061–1064.

    Article  Google Scholar 

  32. [32]

    T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater. 58 (2010) 248–260.

    Article  Google Scholar 

  33. [33]

    T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater. 58 (2010) 4814–4826.

    Article  Google Scholar 

  34. [34]

    X. Wang, Q. Pan, L. Liu, S. Xiong, W. Wang, J. Lai, Y. Sun, Z. Huang, Mater. Charact. 144 (2018) 131–140.

    Article  Google Scholar 

  35. [35]

    A. Deschamps, Y. Brechet, Acta Mater. 47 (1998) 293–305.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Defense Pre-Research Foundation of China (Grant No. 9140C500108140C50225), Shanghai Science and Technology Committee Innovation (Grant Nos. 17JC1400600 and 17JC1400601) and Open Foundation of Jiangsu Province Key Laboratory of High-end Structure Materials (Grant No. hsm1905).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qiang Chen or Jian-fei Sun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Hc., Li, M., Yang, Dy. et al. Aging behavior and precipitate characterization of Zn-rich Al–Zn–Mg–Cu alloys with various Mg and Cu contents. J. Iron Steel Res. Int. (2021). https://doi.org/10.1007/s42243-020-00540-8

Download citation

Keywords

  • Al–Zn–Mg–Cu alloy
  • Zn-rich alloy
  • Aging behavior
  • Precipitate characterization
  • Property