Effect of Ti/V ratio on thermodynamics and kinetics of MC in γ/α matrices of Ti–V microalloyed steels

Abstract

Through the solubility product theory of the ternary secondary phase, classical nucleation theory, and Ostwald ripening theory, a model was established to describe the thermodynamics and kinetics of (Ti, V)C precipitates in austenite/ferrite (γ/α) matrices. The model was used to calculate the volume fraction, precipitation–temperature–time (PTT) curve, and nucleation rate–temperature (NrT) curve of MC (M = Ti, V) precipitates in γ/α matrices in Ti–V microalloyed steels with various Ti/V ratios, which is verified by hardness tester, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The calculations indicate that, by decreasing Ti/V ratio from Ti4V0 steel to Ti0V4 steel, the complete-dissolution temperature decreases monotonically from 1226 to 830 °C, and the equilibrium volume fraction of MC precipitated from austenite decreases from 0.333% to 0.091% at 900 °C. Moreover, the maximum nucleation temperature of MC precipitated from α matrix decreases from 748 to 605 °C and the fastest precipitation temperature decreases from 844 to 675 °C as Ti/V ratio decreases. PTT and NrT diagrams of MC precipitated from α matrices in different Ti–V microalloyed steels all exhibit C-shaped and inverse C-shaped curves. In addition, both theoretical calculation and experimental results show that when tempered at 600 °C for 100 h, Ti2V2 steel shows the largest hardness value of 312 HV among the three steels tested because it has a larger volume fraction (0.364%), a larger precipitate density (1689 μm−2), and the smallest average size (8.4 nm) of (Ti, V)C precipitates. The theoretical calculations are consistent with experimental results, which indicates that the thermodynamics and kinetics model for (Ti, V)C precipitates is reliable and accurate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. [1]

    Z.B. Jiao, J.H. Luan, M.K. Miller, Y.W. Chung, C.T. Liu, Mater. Today 20 (2017) 142–154.

    Google Scholar 

  2. [2]

    Z.Q. Wang, X.P. Mao, Z.G. Yang, X.J. Sun, Q.L. Yong, Z.D. Li, Y.Q. Weng, Mater. Sci. Eng. A 529 (2011) 459–467.

    Article  Google Scholar 

  3. [3]

    M.G. Akben, T. Chandra, P. Plassiard, J.J. Jonas, Acta Metall. 32 (1984) 591–601.

    Article  Google Scholar 

  4. [4]

    Z.Q. Wang, Q.L. Yong, X.J. Sun, Z.G. Yang, Z.D. Li, C. Zhang, Y.Q. Weng, ISIJ Int. 52 (2012) 1661–1669.

    Article  Google Scholar 

  5. [5]

    H.J. Eckstein, M. Fennert, J. Ohser, Steel Res. 64 (1993) 143–147.

    Article  Google Scholar 

  6. [6]

    S.G. Hong, K.B. Kang, G.G. Park, Scripta Mater. 46 (2002) 163–168.

    Article  Google Scholar 

  7. [7]

    Z.Q. Wang, X.J. Sun, Z.G. Yang, Q.L. Yong, C. Zhang, Z.D. Li, Y.Q. Weng, Mater. Sci. Eng. A 573 (2013) 84–91.

    Article  Google Scholar 

  8. [8]

    Y. Gu, G.Y. Qiao, D.Y. Wu, B. Liao, F.R. Xiao, Mater. Chem. Phys. 183 (2016) 506–515.

    Article  Google Scholar 

  9. [9]

    P.R. Rios, Mater. Sci. Technol. 4 (1988) 324–327.

    Article  Google Scholar 

  10. [10]

    P.R. Rios, Mater. Sci. Eng. A 142 (1991) 87–94.

    Article  Google Scholar 

  11. [11]

    A. Pandit, A. Murugaiyan, A.S. Podder, A. Haldar, D. Bhattacharjee, S. Chandraa, R.K. Ray, Scripta Mater. 53 (2005) 1309–1314.

    Article  Google Scholar 

  12. [12]

    J.G. Jung, J.S. Park, J. Kim, Y.K. Lee, Mater. Sci. Eng. A 528 (2011) 5529–5535.

    Article  Google Scholar 

  13. [13]

    G.B. Tang, X.Y. Wu, X. Yong, A.M. Bai, Z.D. Liu, Q.L. Yong, Heat Treatment of Metals 33 (2008) No. 8, 67–72.

    Google Scholar 

  14. [14]

    J.B. Qu, Z.D. Wang, X.H. Liu, G.D. Wang, Mater. Sci. Technol. 7 (1999) 93–95.

    Google Scholar 

  15. [15]

    K. Zhang, X.J. Sun, M.Y. Zhang, Z.D. Li, X.Y. Ye, Z.H. Zhu, Z.Y. Huang, Q.L. Yong, Acta Metall. Sin. (Engl. Lett.) 54 (2018) 1122–1130.

  16. [16]

    J.Y. Kang, X.J. Sun, Z.D. Li, Q.L. Yong, J. Iron Steel Res. 27 (2015) No. 5, 50–54.

    Google Scholar 

  17. [17]

    X.P. Xiao, G.H. Shi, S.M. Zhang, Y.W. Gao, Q.F. Wang, F.C. Zhang, J. Iron Steel Res. Int. 26 (2019) 733–742.

    Article  Google Scholar 

  18. [18]

    K. Zhang, Study on microstructure tailoring and strengthening mechanisms of Ti-V-Mo complex microalloyed high strength steel, Kunming University of Science and Technology, Kunming, China, 2016.

    Google Scholar 

  19. [19]

    Q.L. Yong, Secondary phases in steels, Metallurgical Industry Press, Beijing, China, 2016.

    Google Scholar 

  20. [20]

    J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, G.D. Wang, Mater. Sci. Eng. A 565 (2014) 389–393.

    Google Scholar 

  21. [21]

    T. Taylor, P. Evans, Mater. Des. 86 (2015) 714–722.

    Article  Google Scholar 

  22. [22]

    G.W. Yang, J.W. Lu, H. Sun, Z.W. Fang, Y.L. Zhou, N. Yao, J. Iron Steel Res. 31 (2019) 726–732.

    Google Scholar 

  23. [23]

    F. Zhao, B. Jiang, J.X. Xie, Y.Z. Liu, Mater. Lett. 236 (2019) 440–443.

    Article  Google Scholar 

  24. [24]

    X.L. Lin, Q.W. Cai, Y.T. Zhao, Y. Cui, Journal of Material Engineering 43 (2015) No. 6, 52–59.

    Google Scholar 

  25. [25]

    J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 50 (2014) 524–530.

  26. [26]

    C.Y. Chen, H.W. Yen, F.H. Kao, W.C. Li, C.Y. Huang, J.R. Yang, S.H. Wang, Mater. Sci. Eng. A 499 (2009) 162–166.

    Article  Google Scholar 

  27. [27]

    Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, ISIJ Int. 44 (2004) 1945–1951.

    Article  Google Scholar 

  28. [28]

    C.Y. Chen, M.H. Liao, Mater. Des. 186 (2020) 108361.

    Article  Google Scholar 

  29. [29]

    H. Adrian, Mater. Sci. Technol. 8 (1992) 406–420.

    Article  Google Scholar 

  30. [30]

    Q.L. Yong, M.X. Chen, H.Z. Pei, L. Pan, X.L. Zhou, T.W. Yang, W. Zhong, J.Y. Hao, J. Iron Steel Res. 18 (2006) No. 3, 30–32.

    Google Scholar 

  31. [31]

    H.W. Yen, C.Y. Chen, T.Y. Wang, C.Y. Huang, J.R. Yang, Mater. Sci. Technol. 26 (2010) 421–430.

    Article  Google Scholar 

  32. [32]

    J.G. Speer, J.R. Michael, S.S. Hansen, Metall. Mater. Trans. A 18 (1987) 211–222.

    Article  Google Scholar 

  33. [33]

    W.J. Liu, J.J. Jonas, Metall. Trans. A 19 (1988) 1403–1413.

    Article  Google Scholar 

  34. [34]

    A.J. Ardell, Acta Metall. 20 (1972) 61–71.

    Article  Google Scholar 

  35. [35]

    Q.L. Yong, Y.F. Li, Z.B. Sun, B.R. Wu, Acta Metall. Sin. 24 (1988) 373–375.

    Google Scholar 

  36. [36]

    K.J. Irvine, F.B. Pickering, T. Gladman, Trans. Iron Steel Inst. Jpn. 205 (1967) 161–182.

    Google Scholar 

  37. [37]

    [37] K. Narita, Trans. Iron Steel Inst. Jpn. 15 (1975) 145–152.

    Article  Google Scholar 

  38. [38]

    K.A. Tailor, Scripta Metall. Mater. 32 (1995) 7–12.

    Article  Google Scholar 

  39. [39]

    S. Koyama, T. Ishii, K. Narita, J. Jpn. Inst. Met. Mater. 37 (1973) 191–196.

    Article  Google Scholar 

  40. [40]

    S.H. Moll, R.E. Ogilvie, Trans. Am. Inst. Min. Metall. Eng. 215 (1959) 613–618.

    Google Scholar 

  41. [41]

    A.W. Bowen, G.M. Leak, Metall. Trans. 1 (1970) 1695–1700.

    Article  Google Scholar 

  42. [42]

    A.W. Bowen, G.M. Leak, Metall. Trans. 1 (1970) 2767–2773.

    Article  Google Scholar 

  43. [43]

    D.T. Jiao, Q.W Cai, H.B. Wu, Y. Ren, J. Iron Steel Res. Int. 17 (2010) No. 8, 39–44.

    Article  Google Scholar 

  44. [44]

    Y. Funakawa, K. Seto, Mater. Sci. Forum 539–543 (2007) 4813–4818.

    Article  Google Scholar 

  45. [45]

    P.C. Zhang, H.B. Wu, D. Tang, G.J. Huang, L.B. Wang, Acta Metall. Sin. 43 (2007) 753–758.

    Google Scholar 

  46. [46]

    J.G. Speer, S.S. Hansen, Metall. Trans. A 20 (1989) 25–38.

    Article  Google Scholar 

  47. [47]

    G.L. Dunlop, R.W.K. Honeycombe, Met. Sci. 12 (1978) 367–371.

    Article  Google Scholar 

  48. [48]

    Z.B. Jiao, J.C. Liu, Materials China 30 (2011) No. 12, 6–11.

    Google Scholar 

  49. [49]

    K. Zhang, X.J. Sun, Q.L. Yong, Z.D. Li, G.W. Yang, Y.M. Li, Acta Metall. Sin. 51 (2015) 553–560.

    Google Scholar 

  50. [50]

    K. Zhang, Z.D. Li, X.J. Sun, Q.L. Yong, J.W. Yang, Y.M. Li, P.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 28 (2015) 641–648.

  51. [51]

    K. Miyata, T. Kushida, T. Omura, Y. Komizo, Metall. Mater. Trans. A 34 (2003) 1565–1573.

    Article  Google Scholar 

  52. [52]

    C.Y. Chen, C.C. Chen, J.R. Yang, Mater. Charact. 88 (2014) 69–79.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2017YFB0305100 and 2017YFB0304700), the National Natural Science Foundation of China (Nos. 51704008 and 51974003), the Open Research Fund of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization (No.18100009) and the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University (No. 2018RALKFKT006).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ke Zhang or Zheng-hai Zhu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Sun, Xj., Li, Zd. et al. Effect of Ti/V ratio on thermodynamics and kinetics of MC in γ/α matrices of Ti–V microalloyed steels. J. Iron Steel Res. Int. (2021). https://doi.org/10.1007/s42243-020-00539-1

Download citation

Keywords

  • (Ti, V)C precipitate
  • Thermodynamics
  • Kinetics
  • Ti–V microalloyed steel
  • Coarsening rate
  • Hardness