Abstract
Through the solubility product theory of the ternary secondary phase, classical nucleation theory, and Ostwald ripening theory, a model was established to describe the thermodynamics and kinetics of (Ti, V)C precipitates in austenite/ferrite (γ/α) matrices. The model was used to calculate the volume fraction, precipitation–temperature–time (PTT) curve, and nucleation rate–temperature (NrT) curve of MC (M = Ti, V) precipitates in γ/α matrices in Ti–V microalloyed steels with various Ti/V ratios, which is verified by hardness tester, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The calculations indicate that, by decreasing Ti/V ratio from Ti4V0 steel to Ti0V4 steel, the complete-dissolution temperature decreases monotonically from 1226 to 830 °C, and the equilibrium volume fraction of MC precipitated from austenite decreases from 0.333% to 0.091% at 900 °C. Moreover, the maximum nucleation temperature of MC precipitated from α matrix decreases from 748 to 605 °C and the fastest precipitation temperature decreases from 844 to 675 °C as Ti/V ratio decreases. PTT and NrT diagrams of MC precipitated from α matrices in different Ti–V microalloyed steels all exhibit C-shaped and inverse C-shaped curves. In addition, both theoretical calculation and experimental results show that when tempered at 600 °C for 100 h, Ti2V2 steel shows the largest hardness value of 312 HV among the three steels tested because it has a larger volume fraction (0.364%), a larger precipitate density (1689 μm−2), and the smallest average size (8.4 nm) of (Ti, V)C precipitates. The theoretical calculations are consistent with experimental results, which indicates that the thermodynamics and kinetics model for (Ti, V)C precipitates is reliable and accurate.
This is a preview of subscription content, access via your institution.









References
- [1]
Z.B. Jiao, J.H. Luan, M.K. Miller, Y.W. Chung, C.T. Liu, Mater. Today 20 (2017) 142–154.
- [2]
Z.Q. Wang, X.P. Mao, Z.G. Yang, X.J. Sun, Q.L. Yong, Z.D. Li, Y.Q. Weng, Mater. Sci. Eng. A 529 (2011) 459–467.
- [3]
M.G. Akben, T. Chandra, P. Plassiard, J.J. Jonas, Acta Metall. 32 (1984) 591–601.
- [4]
Z.Q. Wang, Q.L. Yong, X.J. Sun, Z.G. Yang, Z.D. Li, C. Zhang, Y.Q. Weng, ISIJ Int. 52 (2012) 1661–1669.
- [5]
H.J. Eckstein, M. Fennert, J. Ohser, Steel Res. 64 (1993) 143–147.
- [6]
S.G. Hong, K.B. Kang, G.G. Park, Scripta Mater. 46 (2002) 163–168.
- [7]
Z.Q. Wang, X.J. Sun, Z.G. Yang, Q.L. Yong, C. Zhang, Z.D. Li, Y.Q. Weng, Mater. Sci. Eng. A 573 (2013) 84–91.
- [8]
Y. Gu, G.Y. Qiao, D.Y. Wu, B. Liao, F.R. Xiao, Mater. Chem. Phys. 183 (2016) 506–515.
- [9]
P.R. Rios, Mater. Sci. Technol. 4 (1988) 324–327.
- [10]
P.R. Rios, Mater. Sci. Eng. A 142 (1991) 87–94.
- [11]
A. Pandit, A. Murugaiyan, A.S. Podder, A. Haldar, D. Bhattacharjee, S. Chandraa, R.K. Ray, Scripta Mater. 53 (2005) 1309–1314.
- [12]
J.G. Jung, J.S. Park, J. Kim, Y.K. Lee, Mater. Sci. Eng. A 528 (2011) 5529–5535.
- [13]
G.B. Tang, X.Y. Wu, X. Yong, A.M. Bai, Z.D. Liu, Q.L. Yong, Heat Treatment of Metals 33 (2008) No. 8, 67–72.
- [14]
J.B. Qu, Z.D. Wang, X.H. Liu, G.D. Wang, Mater. Sci. Technol. 7 (1999) 93–95.
- [15]
K. Zhang, X.J. Sun, M.Y. Zhang, Z.D. Li, X.Y. Ye, Z.H. Zhu, Z.Y. Huang, Q.L. Yong, Acta Metall. Sin. (Engl. Lett.) 54 (2018) 1122–1130.
- [16]
J.Y. Kang, X.J. Sun, Z.D. Li, Q.L. Yong, J. Iron Steel Res. 27 (2015) No. 5, 50–54.
- [17]
X.P. Xiao, G.H. Shi, S.M. Zhang, Y.W. Gao, Q.F. Wang, F.C. Zhang, J. Iron Steel Res. Int. 26 (2019) 733–742.
- [18]
K. Zhang, Study on microstructure tailoring and strengthening mechanisms of Ti-V-Mo complex microalloyed high strength steel, Kunming University of Science and Technology, Kunming, China, 2016.
- [19]
Q.L. Yong, Secondary phases in steels, Metallurgical Industry Press, Beijing, China, 2016.
- [20]
J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, G.D. Wang, Mater. Sci. Eng. A 565 (2014) 389–393.
- [21]
T. Taylor, P. Evans, Mater. Des. 86 (2015) 714–722.
- [22]
G.W. Yang, J.W. Lu, H. Sun, Z.W. Fang, Y.L. Zhou, N. Yao, J. Iron Steel Res. 31 (2019) 726–732.
- [23]
F. Zhao, B. Jiang, J.X. Xie, Y.Z. Liu, Mater. Lett. 236 (2019) 440–443.
- [24]
X.L. Lin, Q.W. Cai, Y.T. Zhao, Y. Cui, Journal of Material Engineering 43 (2015) No. 6, 52–59.
- [25]
J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 50 (2014) 524–530.
- [26]
C.Y. Chen, H.W. Yen, F.H. Kao, W.C. Li, C.Y. Huang, J.R. Yang, S.H. Wang, Mater. Sci. Eng. A 499 (2009) 162–166.
- [27]
Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, ISIJ Int. 44 (2004) 1945–1951.
- [28]
C.Y. Chen, M.H. Liao, Mater. Des. 186 (2020) 108361.
- [29]
H. Adrian, Mater. Sci. Technol. 8 (1992) 406–420.
- [30]
Q.L. Yong, M.X. Chen, H.Z. Pei, L. Pan, X.L. Zhou, T.W. Yang, W. Zhong, J.Y. Hao, J. Iron Steel Res. 18 (2006) No. 3, 30–32.
- [31]
H.W. Yen, C.Y. Chen, T.Y. Wang, C.Y. Huang, J.R. Yang, Mater. Sci. Technol. 26 (2010) 421–430.
- [32]
J.G. Speer, J.R. Michael, S.S. Hansen, Metall. Mater. Trans. A 18 (1987) 211–222.
- [33]
W.J. Liu, J.J. Jonas, Metall. Trans. A 19 (1988) 1403–1413.
- [34]
A.J. Ardell, Acta Metall. 20 (1972) 61–71.
- [35]
Q.L. Yong, Y.F. Li, Z.B. Sun, B.R. Wu, Acta Metall. Sin. 24 (1988) 373–375.
- [36]
K.J. Irvine, F.B. Pickering, T. Gladman, Trans. Iron Steel Inst. Jpn. 205 (1967) 161–182.
- [37]
[37] K. Narita, Trans. Iron Steel Inst. Jpn. 15 (1975) 145–152.
- [38]
K.A. Tailor, Scripta Metall. Mater. 32 (1995) 7–12.
- [39]
S. Koyama, T. Ishii, K. Narita, J. Jpn. Inst. Met. Mater. 37 (1973) 191–196.
- [40]
S.H. Moll, R.E. Ogilvie, Trans. Am. Inst. Min. Metall. Eng. 215 (1959) 613–618.
- [41]
A.W. Bowen, G.M. Leak, Metall. Trans. 1 (1970) 1695–1700.
- [42]
A.W. Bowen, G.M. Leak, Metall. Trans. 1 (1970) 2767–2773.
- [43]
D.T. Jiao, Q.W Cai, H.B. Wu, Y. Ren, J. Iron Steel Res. Int. 17 (2010) No. 8, 39–44.
- [44]
Y. Funakawa, K. Seto, Mater. Sci. Forum 539–543 (2007) 4813–4818.
- [45]
P.C. Zhang, H.B. Wu, D. Tang, G.J. Huang, L.B. Wang, Acta Metall. Sin. 43 (2007) 753–758.
- [46]
J.G. Speer, S.S. Hansen, Metall. Trans. A 20 (1989) 25–38.
- [47]
G.L. Dunlop, R.W.K. Honeycombe, Met. Sci. 12 (1978) 367–371.
- [48]
Z.B. Jiao, J.C. Liu, Materials China 30 (2011) No. 12, 6–11.
- [49]
K. Zhang, X.J. Sun, Q.L. Yong, Z.D. Li, G.W. Yang, Y.M. Li, Acta Metall. Sin. 51 (2015) 553–560.
- [50]
K. Zhang, Z.D. Li, X.J. Sun, Q.L. Yong, J.W. Yang, Y.M. Li, P.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 28 (2015) 641–648.
- [51]
K. Miyata, T. Kushida, T. Omura, Y. Komizo, Metall. Mater. Trans. A 34 (2003) 1565–1573.
- [52]
C.Y. Chen, C.C. Chen, J.R. Yang, Mater. Charact. 88 (2014) 69–79.
Acknowledgements
This work was financially supported by the National Key Research and Development Program of China (Nos. 2017YFB0305100 and 2017YFB0304700), the National Natural Science Foundation of China (Nos. 51704008 and 51974003), the Open Research Fund of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization (No.18100009) and the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University (No. 2018RALKFKT006).
Author information
Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Zhang, K., Sun, Xj., Li, Zd. et al. Effect of Ti/V ratio on thermodynamics and kinetics of MC in γ/α matrices of Ti–V microalloyed steels. J. Iron Steel Res. Int. (2021). https://doi.org/10.1007/s42243-020-00539-1
Received:
Revised:
Accepted:
Published:
Keywords
- (Ti, V)C precipitate
- Thermodynamics
- Kinetics
- Ti–V microalloyed steel
- Coarsening rate
- Hardness