Strength, strain capacity and toughness of five dual-phase pipeline steels

Abstract

The effect of microstructures on strength, strain capacity and low temperature toughness of a micro-alloyed pipeline steel was elucidated. Five various dual-phase microstructures, namely, acicular ferrite and a small amount of (around 2 vol.%) polygonal ferrite (AF + PF), polygonal ferrite and bainite (PF + B), polygonal ferrite and martensite/austenite islands (PF + M/A), polygonal ferrite and martensite (PF + M) and elongated polygonal ferrite and martensite (ePF + M), have been studied. Experimental results show that AF + PF microstructure has high yield strength and excellent low temperature toughness, whereas its yield ratio is the highest. Polygonal ferrite-based dual-phase steels, PF + B, PF + M/A and PF + M microstructures show better strain capacity and low temperature toughness. The strain capacity and low temperature toughness of ePF + M microstructure are the worst due to its high strength. The relationship between microstructure, strength, strain capacity and toughness has been established. Based on the results, the optimum microstructure for a better combination of strength, strain capacity and toughness is suggested to be the one having appropriate polygonal ferrite as second phase in an acicular ferrite matrix.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. [1]

    S.J. Jia, B. Li, Q.Y. Liu, Y. Ren, S. Zhang, H. Gao, J. Iron Steel Res. Int. (2020) https://doi.org/10.1007/s42243-019-00346-3.

    Article  Google Scholar 

  2. [2]

    A. Gervasyev, I. Pyshmintsev, R. Petrov, C. Huo, F. Barbaro, Mater. Sci. Eng. A 772 (2020) 138746.

    Article  Google Scholar 

  3. [3]

    Z.T. Zhao, X.S. Wang, G.Y. Qiao, S.Y. Zhang, B. Liao, F.R. Xiao, Mater. Des. 180 (2019) 107870.

    Article  Google Scholar 

  4. [4]

    B. Li, Q.Y. Liu, S.J. Jia, Y. Ren, B. Wang, Acta Metall. Sin. (Engl. Lett.) 31 (2018) 1038–1048.

  5. [5]

    X.B. Shi, W. Yan, D. Xu, M.C. Yan, C.G. Yang, Y.Y. Shan, K. Yang, J. Mater. Sci. Technol. 34 (2018) 2480–2491.

    Article  Google Scholar 

  6. [6]

    X.D. Li, C.N. Li, G. Yuan, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 30 (2017) 483–491.

  7. [7]

    X.B. Shi, W. Yan, M.C. Yan, W. Wang, Z.G. Yang, Y.Y. Shan, K. Yang, Acta. Metall. Sin. (Engl. Lett.) 30 (2017) 601–613.

  8. [8]

    X.B. Shi, W. Yan, W. Wang, Y.Y. Shan, K. Yang, Mater. Des. 92 (2016) 300–305.

    Article  Google Scholar 

  9. [9]

    L.W. Tong, L.C. Niu, S. Jing, L.W. Ai, X.L. Zhao, Thin Wall. Struct. 132 (2018) 410–420.

    Google Scholar 

  10. [10]

    Y. Zhao, X. Tong, X.H. Wei, S.S. Xu, S. Lan, X.L. Wang, Z.W. Zhang, Int. J. Plasticity 116 (2019) 203–215.

    Article  Google Scholar 

  11. [11]

    T. Shinmiya, N. Ishikawa, M. Okatsu, S. Endo, N. Shikanai, Int. J. Offshore Polar Eng. 18 (2008) 308–313.

    Google Scholar 

  12. [12]

    X.B. Shi, W. Yan, Z.G. Yang, Y. Ren, Y.Y. Shan, K. Yang, ISIJ Int. 60 (2020) 792–798.

    Google Scholar 

  13. [13]

    B.X. Wang, J.B. Lian, Mater. Sci. Eng. A 592 (2014) 50–56.

    Article  Google Scholar 

  14. [14]

    C.J. Tang, C.J. Shang, S.L. Liu, H.L. Guan, R.D.K. Misra, Y.B. Chen, Mater. Sci. Eng. A 731 (2018) 173–183.

    Article  Google Scholar 

  15. [15]

    X.Y. Zhang, H.L. Gao, X.Q. Zhang, Y. Yang, Mater. Sci. Eng. A 531 (2012) 84–90.

    Article  Google Scholar 

  16. [16]

    W. Wang, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 502 (2009) 38–44.

    Article  Google Scholar 

  17. [17]

    Q.L. Yong, Secondary phases in steels, Metallurgical Industry Press, Beijing, China, 2006.

    Google Scholar 

  18. [18]

    T. Hüper, S. Endo, N. Ishikawa, K. Osawa, ISIJ Int. 39 (1999) 288–294.

    Article  Google Scholar 

  19. [19]

    N. Ishikawa, N. Shikanai, J. Kondo, JFE Tech. Rep. 12 (2008) 15–19.

    Google Scholar 

  20. [20]

    M. Okatsu, N. Shikanai, J. Kondo, JFE Tech. Rep. 12 (2008) 8–14.

    Google Scholar 

  21. [21]

    R.T. Li, X.R. Zuo, Y.Y. Hu, Z.W. Wang, D.X. Hu, Mater. Charact. 62 (2011) 801–806.

    Article  Google Scholar 

  22. [22]

    X.B. Shi, W. Yan, W. Wang, L.Y. Zhao, Y.Y. Shan, K. Yang, J. Iron Steel Res. Int. 22 (2015) 937–942.

    Article  Google Scholar 

  23. [23]

    Y.M. Kim, S.K. Kim, Y.J. Lim, N.J. Kim, ISIJ Int. 42 (2002) 1571–1577.

    Article  Google Scholar 

  24. [24]

    R.M. Alé, J.M.A. Rebello, J. Charlier, Mater. Charact. 37 (1996) 89–93.

    Article  Google Scholar 

  25. [25]

    J.H. Hollomon, Trans. ASM 32 (1944) 123–133.

    Google Scholar 

  26. [26]

    Y. Sakai, K. Tamanoi, N. Ogura, Nucl. Eng. Des. 115 (1989) 31–39.

    Article  Google Scholar 

  27. [27]

    L.K. Ji, H.L. Li, H.T. Wang, J.M. Zhang, W.Z. Zhao, H.Y. Chen, Y. Li, Q. Chi, J. Mater. Eng. Perform. 23 (2014) 3867–3874.

    Article  Google Scholar 

  28. [28]

    M.C. Zhao, K. Yang, Y.Y. Shan, Mater. Lett. 57 (2003) 1496–1500.

    Article  Google Scholar 

  29. [29]

    D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44 (2009) 2957–2965.

    Article  Google Scholar 

  30. [30]

    F. Xiao, B. Liao, D.L. Ren, Y.Y. Shan, K. Yang, Mater. Charact. 54 (2005) 305–314.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0304901, 2018YFC0310302 and 2018YFC0310304), State Key Laboratory of Metal Material for Marine Equipment and Application Funding (Grant No. SKLMEA-K201901) and the Doctoral Scientific Research Foundation of Liaoning Province (Grant No. 20180540083).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xian-bo Shi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Shi, Xb., Yang, Zg. et al. Strength, strain capacity and toughness of five dual-phase pipeline steels. J. Iron Steel Res. Int. (2021). https://doi.org/10.1007/s42243-020-00522-w

Download citation

Keywords

  • Pipeline steel
  • Dual-phase microstructure
  • Strength
  • Strain capacity
  • Toughness