Abstract
The effect of microstructures on strength, strain capacity and low temperature toughness of a micro-alloyed pipeline steel was elucidated. Five various dual-phase microstructures, namely, acicular ferrite and a small amount of (around 2 vol.%) polygonal ferrite (AF + PF), polygonal ferrite and bainite (PF + B), polygonal ferrite and martensite/austenite islands (PF + M/A), polygonal ferrite and martensite (PF + M) and elongated polygonal ferrite and martensite (ePF + M), have been studied. Experimental results show that AF + PF microstructure has high yield strength and excellent low temperature toughness, whereas its yield ratio is the highest. Polygonal ferrite-based dual-phase steels, PF + B, PF + M/A and PF + M microstructures show better strain capacity and low temperature toughness. The strain capacity and low temperature toughness of ePF + M microstructure are the worst due to its high strength. The relationship between microstructure, strength, strain capacity and toughness has been established. Based on the results, the optimum microstructure for a better combination of strength, strain capacity and toughness is suggested to be the one having appropriate polygonal ferrite as second phase in an acicular ferrite matrix.
This is a preview of subscription content, access via your institution.










References
- [1]
S.J. Jia, B. Li, Q.Y. Liu, Y. Ren, S. Zhang, H. Gao, J. Iron Steel Res. Int. (2020) https://doi.org/10.1007/s42243-019-00346-3.
- [2]
A. Gervasyev, I. Pyshmintsev, R. Petrov, C. Huo, F. Barbaro, Mater. Sci. Eng. A 772 (2020) 138746.
- [3]
Z.T. Zhao, X.S. Wang, G.Y. Qiao, S.Y. Zhang, B. Liao, F.R. Xiao, Mater. Des. 180 (2019) 107870.
- [4]
B. Li, Q.Y. Liu, S.J. Jia, Y. Ren, B. Wang, Acta Metall. Sin. (Engl. Lett.) 31 (2018) 1038–1048.
- [5]
X.B. Shi, W. Yan, D. Xu, M.C. Yan, C.G. Yang, Y.Y. Shan, K. Yang, J. Mater. Sci. Technol. 34 (2018) 2480–2491.
- [6]
X.D. Li, C.N. Li, G. Yuan, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 30 (2017) 483–491.
- [7]
X.B. Shi, W. Yan, M.C. Yan, W. Wang, Z.G. Yang, Y.Y. Shan, K. Yang, Acta. Metall. Sin. (Engl. Lett.) 30 (2017) 601–613.
- [8]
X.B. Shi, W. Yan, W. Wang, Y.Y. Shan, K. Yang, Mater. Des. 92 (2016) 300–305.
- [9]
L.W. Tong, L.C. Niu, S. Jing, L.W. Ai, X.L. Zhao, Thin Wall. Struct. 132 (2018) 410–420.
- [10]
Y. Zhao, X. Tong, X.H. Wei, S.S. Xu, S. Lan, X.L. Wang, Z.W. Zhang, Int. J. Plasticity 116 (2019) 203–215.
- [11]
T. Shinmiya, N. Ishikawa, M. Okatsu, S. Endo, N. Shikanai, Int. J. Offshore Polar Eng. 18 (2008) 308–313.
- [12]
X.B. Shi, W. Yan, Z.G. Yang, Y. Ren, Y.Y. Shan, K. Yang, ISIJ Int. 60 (2020) 792–798.
- [13]
B.X. Wang, J.B. Lian, Mater. Sci. Eng. A 592 (2014) 50–56.
- [14]
C.J. Tang, C.J. Shang, S.L. Liu, H.L. Guan, R.D.K. Misra, Y.B. Chen, Mater. Sci. Eng. A 731 (2018) 173–183.
- [15]
X.Y. Zhang, H.L. Gao, X.Q. Zhang, Y. Yang, Mater. Sci. Eng. A 531 (2012) 84–90.
- [16]
W. Wang, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 502 (2009) 38–44.
- [17]
Q.L. Yong, Secondary phases in steels, Metallurgical Industry Press, Beijing, China, 2006.
- [18]
T. Hüper, S. Endo, N. Ishikawa, K. Osawa, ISIJ Int. 39 (1999) 288–294.
- [19]
N. Ishikawa, N. Shikanai, J. Kondo, JFE Tech. Rep. 12 (2008) 15–19.
- [20]
M. Okatsu, N. Shikanai, J. Kondo, JFE Tech. Rep. 12 (2008) 8–14.
- [21]
R.T. Li, X.R. Zuo, Y.Y. Hu, Z.W. Wang, D.X. Hu, Mater. Charact. 62 (2011) 801–806.
- [22]
X.B. Shi, W. Yan, W. Wang, L.Y. Zhao, Y.Y. Shan, K. Yang, J. Iron Steel Res. Int. 22 (2015) 937–942.
- [23]
Y.M. Kim, S.K. Kim, Y.J. Lim, N.J. Kim, ISIJ Int. 42 (2002) 1571–1577.
- [24]
R.M. Alé, J.M.A. Rebello, J. Charlier, Mater. Charact. 37 (1996) 89–93.
- [25]
J.H. Hollomon, Trans. ASM 32 (1944) 123–133.
- [26]
Y. Sakai, K. Tamanoi, N. Ogura, Nucl. Eng. Des. 115 (1989) 31–39.
- [27]
L.K. Ji, H.L. Li, H.T. Wang, J.M. Zhang, W.Z. Zhao, H.Y. Chen, Y. Li, Q. Chi, J. Mater. Eng. Perform. 23 (2014) 3867–3874.
- [28]
M.C. Zhao, K. Yang, Y.Y. Shan, Mater. Lett. 57 (2003) 1496–1500.
- [29]
D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44 (2009) 2957–2965.
- [30]
F. Xiao, B. Liao, D.L. Ren, Y.Y. Shan, K. Yang, Mater. Charact. 54 (2005) 305–314.
Acknowledgements
This work was financially supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0304901, 2018YFC0310302 and 2018YFC0310304), State Key Laboratory of Metal Material for Marine Equipment and Application Funding (Grant No. SKLMEA-K201901) and the Doctoral Scientific Research Foundation of Liaoning Province (Grant No. 20180540083).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ren, Y., Shi, Xb., Yang, Zg. et al. Strength, strain capacity and toughness of five dual-phase pipeline steels. J. Iron Steel Res. Int. (2021). https://doi.org/10.1007/s42243-020-00522-w
Received:
Revised:
Accepted:
Published:
Keywords
- Pipeline steel
- Dual-phase microstructure
- Strength
- Strain capacity
- Toughness