Effect of thermal cycles on microstructure of reduced activation steel fabricated using laser melting deposition


Reduced activation steel was successfully fabricated by laser melting deposition employing a Gaussian and a ring-shaped laser. The microstructure evolution of the reduced activation steel was investigated using the scanning electron microscope, transmission electron microscope and electron backscatter diffraction. The experimental results showed that the grains close to the substrate were smaller than the grains in the upper layers. Compared to those deposited using a Gaussian laser, the samples deposited using a ring-shaped laser showed a more homogeneous microstructure. Furthermore, a finite element analysis (FEA) model was applied to reveal the thermal history during laser melting deposition. The simulation results were well validated with the experimental results. FEA results indicate that the peak temperature increases and the cooling rate decreases, as the layer gets further from the substrate. Additionally, the temperature and the cooling rate resulting from the Gaussian laser model were higher at the midline of the samples and lower around the edges, whereas those of the ring-shaped laser model were consistent with both at the center and around the edges.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. [1]

    A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, T.F. Abe, J. Nucl. Mater. 417 (2011) 176–179.

    Article  Google Scholar 

  2. [2]

    Z. Xia, J. Xu, J. Shi, T. Shi, C. Sun, D. Qiu, Add. Manuf. 33 (2020) 101114.

    Google Scholar 

  3. [3]

    S. Noh, M. Ando, H. Tanigawa, H. Fujii, A. Kimura, J. Nucl. Mater. 478 (2016) 1–6.

    Article  Google Scholar 

  4. [4]

    H. Li, A. Nishimura, T. Muroga, T. Nagasaka, J. Nucl. Mater. 367–370 (2007) 147–152.

    Article  Google Scholar 

  5. [5]

    Y. Li, Q. Huang, Y. Wu, T. Nagasaka, T. Muroga, J. Nucl. Mater. 367–370 (2007) 117–121.

    Article  Google Scholar 

  6. [6]

    X. Chen, A. Bhattacharya, M.A. Sokolov, L.N. Clowers, Y. Yamamoto, T. Graening, K.D. Linton, Y. Katoh, M. Rieth, Fusion Eng. Des. 146 (2019) 2227–2232.

    Article  Google Scholar 

  7. [7]

    N.V. Luzginova, J.W. Rensman, M. Jong, P. ten Pierick, T. Bakker, H. Nolles, J. Nucl. Mater. 455 (2014) 21–25.

    Article  Google Scholar 

  8. [8]

    X. Chen, Y. Huang, B. Madigan, J. Zhou, Fusion Eng. Des. 87 (2012) 1639–1646.

    Article  Google Scholar 

  9. [9]

    P. Wang, J. Chen, H. Fu, S. Liu, X. Li, Z. Xu, J. Nucl. Mater. 442 (2013) S9–S12.

    Article  Google Scholar 

  10. [10]

    P. Wang, J. Chen, H. Fu, S. Liu, X. Li, Z. Xu, Plasma Sci. Technol. 15 (2013) 133–136.

    Article  Google Scholar 

  11. [11]

    W. Jiang, Z. Xia, J. Xu, D. Zhao, S. Xia, L. Wang, Fusion Eng. Des. 157 (2020) 111646.

    Article  Google Scholar 

  12. [12]

    J. Lei, J. Xie, S. Zhou, H. Song, X. Song, X. Zhou, Opt. Laser Technol. 111 (2019) 271–283.

    Article  Google Scholar 

  13. [13]

    Z. Xia, C. Wang, D. Zhao, R. Zhang, P. Cheng, X. He, Surf. Coat. Technol. 367 (2019) 108–117.

    Article  Google Scholar 

  14. [14]

    J. Choi, Y. Chang, Int. J. Mach. Tools Manuf. 45 (2005) 597–607.

    Article  Google Scholar 

  15. [15]

    F.F. Conde, J.D. Escobar, J.P. Oliveira, M. Béreš, A.L. Jardini, W.W. Bose, J.A. Avila, Mater. Sci. Eng. A 758 (2019) 192–201.

    Article  Google Scholar 

  16. [16]

    S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, Add. Manuf. 8 (2015) 36–62.

    Google Scholar 

  17. [17]

    B. Huang, Y. Zhai, S. Liu, X. Mao, J. Nucl. Mater. 500 (2018) 33–41.

    Article  Google Scholar 

  18. [18]

    Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17 (2018) 63–71.

    Article  Google Scholar 

  19. [19]

    H. Yu, J. Yang, J. Yin, Z. Wang, X. Zeng, Mater. Sci. Eng. A 695 (2017) 92–100.

    Article  Google Scholar 

  20. [20]

    Y. Shi, Z. Lu, Y. Ren, G. Yang, Mater. Charact. 144 (2018) 554–562.

    Article  Google Scholar 

  21. [21]

    M.G. Jiang, Z.W. Chen, J.D. Tong, C.Y. Liu, G. Xu, H.B. Liao, P. Wang, X.Y. Wang, M. Xu, C.S. Lao, Mater. Res. Lett. 7 (2019) 426–432.

    Article  Google Scholar 

  22. [22]

    C.Y. Liu, J.D. Tong, M.G. Jiang, Z.W. Chen, G. Xu, H.B. Liao, P. Wang, X.Y. Wang, M. Xu, C.S. Lao, Mater. Sci. Eng. A 766 (2019) 138364.

    Article  Google Scholar 

  23. [23]

    Y. Liu, J. Zhang, Z. Pang, Opt. Laser Technol. 98 (2018) 23–32.

    Article  Google Scholar 

  24. [24]

    R.S. Long, W.J. Liu, F. Xing, H.B. Wang, Trans. Nonferrous Met. Soc. China 18 (2008) 691–699.

    Article  Google Scholar 

  25. [25]

    T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112–224.

    Article  Google Scholar 

  26. [26]

    T. Amine, J.W. Newkirk, F. Liou, Appl. Therm. Eng. 73 (2014) 500–511.

    Article  Google Scholar 

  27. [27]

    Y.P. Hu, C.W. Chen, K. Mukherjee, J. Laser Appl. 12 (2000) 126–130.

    Article  Google Scholar 

  28. [28]

    I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, D.J. Mynors, Int. J. Mach. Tools Manuf. 49 (2009) 916–923.

    Article  Google Scholar 

  29. [29]

    P. Mac Ardghail, N. Harrison, S.B. Leen, Int. J. Pressure Vessels Piping 173 (2019) 26–44.

    Article  Google Scholar 

  30. [30]

    N. Tamanna, R. Crouch, S. Naher, Opt. Lasers Eng. 122 (2019) 151–163.

    Article  Google Scholar 

  31. [31]

    J. Wang, S. Lu, L. Rong, D. Li, J. Mater. Process. Technol. 222 (2015) 434–443.

    Article  Google Scholar 

  32. [32]

    J. Yu, Q. Huang, F. Wan, J. Nucl. Mater. 367–370 (2007) 97–101.

    Article  Google Scholar 

  33. [33]

    T. Hirose, K. Shiba, T. Sawai, S. Jitsukawa, M. Akiba, J. Nucl. Mater. 329 (2004) 324–327.

    Article  Google Scholar 

  34. [34]

    Y. Li, Q. Huang, Y. Wu, Nucl. Phys. Rev. 23 (2006) 151–154.

    Google Scholar 

  35. [35]

    Z.X. Xia, C. Zhang, Z.G. Yang, Mater. Sci. Eng, A 528 (2011) 6764–6768.

    Article  Google Scholar 

  36. [36]

    Q.S. Wu, S.H. Zheng, Q.Y. Huang, S.J. Liu, Y.Y. Han, J. Nucl. Mater. 442 (2013) S67–S70.

    Article  Google Scholar 

  37. [37]

    J. Li, H. Li, W. Peng, T. Xiang, Z. Xu, J. Yang, Mater. Charact. 149 (2019) 206–217.

    Article  Google Scholar 

  38. [38]

    L. Costa, R. Vilar, T. Reti, A.M. Deus, Acta Mater. 53 (2005) 3987–3999.

    Article  Google Scholar 

  39. [39]

    T.A. Rodrigues, V. Duarte, J.A. Avila, T.G. Santos, R.M. Miranda, J.P. Oliveira, Add. Manuf. 27 (2019) 440–450.

    Google Scholar 

Download references


This work was supported financially by the National Key R&D Program of China (Grant No. 2018YFB1105801) and the National Natural Science Foundation of China (Grant No. 51701134).

Author information



Corresponding authors

Correspondence to Zhi-xin Xia or Chi Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

An, Q., Xia, Z., Zhang, C. et al. Effect of thermal cycles on microstructure of reduced activation steel fabricated using laser melting deposition. J. Iron Steel Res. Int. (2020). https://doi.org/10.1007/s42243-020-00442-9

Download citation


  • Laser melting deposition
  • Reduced activation steel
  • Microstructure evolution
  • Thermal cycle
  • Finite element analysis