Recovery of zinc from Zn–Al–Fe alloys by gas pressure filtration


The recovery of zinc from galvanizing dross and the removal of iron contained dross particles by gas pressure filtration were investigated using the model of Zn–Fe–Al alloys. The majority of molten zinc was separated after filtration, and the residue intercepted by the filter consisting mostly of dross particles. The effects of the pressure differential (p), separation temperature (T) and alloy composition on the zinc recovery and iron removal were investigated. At p = 0.30 MPa and T = 723 K, 86.2 wt.% zinc was recovered from the Zn–4Al–2Fe alloy, and up to 99.9 wt.% of the iron was concentrated in the residue. Applying a higher pressure differential led to the improved filtration efficiency, and the desired separation temperature was about 723 K. The aluminum content in the Zn–Al–Fe alloy had little effect on separation efficiency, whereas increasing the iron content led to a decrease in the separation efficiency. Our findings demonstrate the potential of the gas pressure filtration method for the recovery of zinc from galvanizing dross.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. [1]

    L. Wang, C.S. Liu, H.Y. Yu, C.Q. An, J. Iron Steel Res. Int. 19 (2012) No. 11, 46–51.

    Article  Google Scholar 

  2. [2]

    Z.F. Li, Y.Q. He, G.M. Cao, J.J. Tang, X.J. Zhang, Z.Y. Liu, J. Iron Steel Res. Int. 24 (2017) 1032–1040.

    Article  Google Scholar 

  3. [3]

    A.R.P. Ghuman, J.I. Goldstein, Metall. Trans. 2 (1971) 2903–2914.

    Article  Google Scholar 

  4. [4]

    J. Krzywicki, T. Langill, Process Des. Notes Hot Dip Galvaniz. 5 (2001) 1–8.

    Google Scholar 

  5. [5]

    M.K. Jha, V. Kumar, R.J. Singh, Resour. Conserv. Recycl. 33 (2001) 1–22.

    Article  Google Scholar 

  6. [6]

    A.R. Marder, Prog. Mater. Sci. 45 (2000) 191–271.

    Article  Google Scholar 

  7. [7]

    A. Mondal, A. Chakraborty, S. Bysakh, M. Dutta, S.B. Singh, J. Alloy. Compd. 699 (2017) 947–958.

    Article  Google Scholar 

  8. [8]

    A.P. Dong, D. Shu, J. Wang, X.C. Cai, B.D. Sun, J. Cui, J.G. Shen, Y.S. Ren, X.D. Yin, Mater. Sci. Technol. 24 (2008) 40–44.

    Article  Google Scholar 

  9. [9]

    A. Gopala, H. Kipphardt, R. Matschat, U. Panne, Mater. Chem. Phys. 122 (2010) 151–155.

    Article  Google Scholar 

  10. [10]

    X. Ren, Q. Wei, S. Hu, S. Wei, J. Hazard. Mater. 181 (2010) 908–915.

    Article  Google Scholar 

  11. [11]

    H. Zheng, Z. Gu, Y. Zheng, Hydrometallurgy 90 (2008) 8–12.

    Article  Google Scholar 

  12. [12]

    Z. Wang, J. Gao, A. Shi, L. Meng, Z. Guo, J. Alloy. Compd. 735 (2018) 1997–2006.

    Article  Google Scholar 

  13. [13]

    Z. Wang, J. Gao, L. Meng, A. Shi, Z. Guo, ISIJ Int. 58 (2018) 1175–1177.

    Article  Google Scholar 

  14. [14]

    U.A. Peuker, W. Stahl, Dry. Technol. 19 (2001) 807–848.

    Article  Google Scholar 

  15. [15]

    M. Mizumoto, T. Ohgai, A. Kagawa, J. Mater. Process. Technol. 209 (2009) 4264–4267.

    Article  Google Scholar 

  16. [16]

    T. Li, L. Guo, Z. Wang, Z. Guo, Metall. Mater. Trans. B 50 (2019) 1171–1179.

    Article  Google Scholar 

  17. [17]

    C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfound, J. Melancon, A.D. Pelton, S. Petersen, Calphad 26 (2002) 189–228.

    Article  Google Scholar 

  18. [18]

    G. Vourlias, N. Pistofidis, G. Stergioudis, E.K. Polychroniadis, Solid State Sci. 7 (2005) 465–474.

    Article  Google Scholar 

  19. [19]

    X. Cao, M. Jahazi, Mater. Sci. Eng. A 408 (2005) 234–242.

    Article  Google Scholar 

  20. [20]

    A. Mortensen, J.A. Cornie, Metall. Trans. A 18 (1987) 1160–1163.

    Article  Google Scholar 

  21. [21]

    T.R. Hogness, J. Am. Chem. Soc. 43 (1921) 1621–1628.

    Article  Google Scholar 

  22. [22]

    J. Kelley, H. Harris, J. Test. Eval. 2 (1974) 40–43.

    Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (No. 51704022) and the Fundamental Research Funds for the Central Universities (FRF-TP-19-010A2).

Author information



Corresponding authors

Correspondence to Zhe Wang or Zhan-cheng Guo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, T., Wang, Z., Guo, L. et al. Recovery of zinc from Zn–Al–Fe alloys by gas pressure filtration. J. Iron Steel Res. Int. (2020).

Download citation


  • Galvanizing dross
  • Gas pressure filtration
  • Zinc recovery
  • Iron removal
  • Separation