Physical simulation of mixing on a C–H2 smelting reduction reactor with different tracer feeding positions

Abstract

With the growing demand for energy saving, emission reduction, and green metallurgy, we had designed a new C–H2 smelting reduction reactor. In order to solve the key problem that the heat transfer efficiency from high temperature oxidation zone in upper region to low temperature reduction zone in lower region is low in traditional metallurgical reduction reactor, a water simulation was adopted to optimize the mean residence time and to improve the transmission efficiency within the reactor. According to the modified Froude similarity, a water model experimental reactor with a ratio of 1:1 to the prototype was constructed. In the prototype, the feed port was used to feed preheated ore and flux. In order to simulate the effect of different feeding positions of the tracer on the mixing behavior in the molten pool, four points of tracer feeding position were arranged for a systematic study. At the same time, based on double-row side nozzle with thick slag layer in a C–H2 smelting reduction reactor, nine influencing factors, including relative angle between upper and lower side nozzles, were studied. The experimental results showed that the tracer feeding position had a great influence on the mean residence time, and the relative angle also had a great influence on tracer feeding position. Finally, through comprehensive analysis, the optimal condition parameters were obtained under different tracer feeding positions. These results provide valuable help for the design and optimization of the C-H2 smelting reduction reactor.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. [1]

    E. Karakaya, C. Nuur, L. Assbring, J. Clean. Prod. 195 (2018) 651–663.

    Article  Google Scholar 

  2. [2]

    C.B. Qin, J.Q. Su, Q. Wang, J. Wan, J.N. Wang, Res. Environ. Sci. 31 (2018) 985–990.

    Google Scholar 

  3. [3]

    R.Y. An, B.Y. Yu, R. Li, Y.M. Wei, Appl. Energy 226 (2018) 862–880.

    Article  Google Scholar 

  4. [4]

    H. Mandova, S. Leduc, C. Wang, E. Wetterlund, P. Patrizio, W. Gale, F. Kraxner, Biomass Bioenergy 115 (2018) 231–243.

    Article  Google Scholar 

  5. [5]

    Q. Zhang, Y. Li, J. Xu, G.Y. Jia, J. Clean. Prod. 172 (2018) 709–723.

    Article  Google Scholar 

  6. [6]

    H.M. Na, C.K. Gao, M.Y. Tian, Z.Q. Qi, Z. Ye, Ecol. Model. 365 (2017) 45–54.

    Article  Google Scholar 

  7. [7]

    M. Gojić, S. Kožuh, Kem. Ind. 55 (2006) 1–10.

    Google Scholar 

  8. [8]

    P.E. Nilles, Metall. Mater. Trans. B 27 (1996) 541–553.

    Article  Google Scholar 

  9. [9]

    X.F. Gong, Shanxi Metall. 40 (2017) No. 2, 86–88.

    Google Scholar 

  10. [10]

    S.B. Xu, H.F. Xu, China Metall. 26 (2016) No. 10, 33–39.

    Google Scholar 

  11. [11]

    W. Shen, S.L. Wu, M.Y. Kou, K.P. Du, Y. Sun, J. Iron Steel Res. Int. 22 (2015) 200–206.

    Article  Google Scholar 

  12. [12]

    Y.X. Qu, Z.S. Zou, Y.P. Xiao, ISIJ Int. 52 (2012) 2186–2193.

    Article  Google Scholar 

  13. [13]

    C.Z. Cao, Y.J. Meng, C.H. Mei, Q.F. Zhang, Y. Li, Q.W. Mao, in: Proceedings of the 11th CSM Steel Congress, The Chinese Society for Metals, Metallurgical Industry Press, Beijing, China, 2017, pp. 238–244.

  14. [14]

    C.Z. Cao, Y.J. Meng, F.X. Yan, D.W. Zhang, X. Li, F.M. Zhang, in: T. Wang, X.B. Chen, D.P. Guillen, et al. (Eds.), Energy Technology 2019, The Minerals, Metals & Materials Series, Springer, 2019, pp. 3–11.

    Google Scholar 

  15. [15]

    O. Almpanis-Lekkas, B. Weiss, W. Wukovits, J. Clean. Prod. 111 (2016) 161–171.

    Article  Google Scholar 

  16. [16]

    S.H. Yi, M.E. Choi, D.H. Kim, C.K. Ko, W.I. Park, S.Y. Kim, Ironmak. Steelmak. 46 (2019) 625–631.

    Article  Google Scholar 

  17. [17]

    J.L. Schenk, Particuology 9 (2011) 14–23.

    Article  Google Scholar 

  18. [18]

    M.T. Ho, A. Bustamante, D.E. Wiley, Int. J. Greenhouse Gas Control 19 (2013) 145–159.

    Article  Google Scholar 

  19. [19]

    J.M. Chou, M.C. Chuang, M.H. Yeh, W.S. Hwang, S.H. Liu, S.T. Tsai, H.S. Wang, Ironmak. Steelmak. 30 (2003) 195–202.

    Article  Google Scholar 

  20. [20]

    J.H. Wei, H.L. Zhu, Q.Y. Jiang, G.M. Shi, H.B. Chi, H.J. Wang, ISIJ Int. 50 (2010) 1347–1356.

    Article  Google Scholar 

  21. [21]

    Y.B. He, B. Tang, Q. Li, Z.S. Zou, J. Iron Steel Res. 27 (2015) No. 5, 13–17.

    Google Scholar 

  22. [22]

    Y.B. He, C.Z. Li, G. Wei, Z.S. Zou, J. Northeast. Univ. Nat. Sci. 36 (2015) 651–654.

    Google Scholar 

  23. [23]

    C.Z. Li, Y.B. He, Q. Li, Z.S.Zou, J. Northeast. Univ. Nat. Sci. 35 (2014) 1266–1269.

    Google Scholar 

  24. [24]

    L. Zhang, G.M. Lin, W.D. Bin, Y.X. Li, X.B. Li, China Nonferrous Metall. (2012) No. 2, 12–14, 19.

  25. [25]

    S.J. Feng, China Nonferrous Metall. (2015) No. 3, 19–21.

    Google Scholar 

  26. [26]

    F.H. Liu, S.B. Wang, J.X. Xu, H.T. Wang, H. Wang, J. Kunming Univ. Sci. Technol. Nat. Sci. Ed. 40 (2015) 60–66.

  27. [27]

    S.B. Zheng, X. Hong, J.L. Xu, G.C. Jiang, in: Proceedings of China Non-Blast Furnace Ironmaking Conference, The Chinese Society for Metals, Beijing, China, 2006, pp. 117–123.

  28. [28]

    Z.Y. Wang, J.Y. Zhang, S.B. Zheng, B. Wang, M. Lei, X. Hong, Chin. J. Process. Eng. 9 (2009) 36–40.

    Google Scholar 

  29. [29]

    M. Lei, J.Y. Zhang, Z.Y. Wang, B. Wang, S.B. Zheng, X. Hong, J. Chin. Rare Earth Soc. 26 (2008) 247–251.

    Google Scholar 

  30. [30]

    D.Y. Yin, J.Y. Zhang, J.Y. Xie, K.F. Feng, B. Wang, S.B. Zheng, X. Hong, in: N.R. Neelameggham, C.K. Belt (Eds.), Energy Technology 2011, Wiley, USA, 2011, pp. 265–273.

    Google Scholar 

  31. [31]

    J.H. Wei, J.C. Ma, Y.Y. Fan, N.W. Yu, S.L. Yang, S.H. Xiang, D.P. Zhu, Ironmak. Steelmak. 26 (1999) 363–371.

    Article  Google Scholar 

  32. [32]

    S.C. Koria, K.W. Lange, Metall. Trans. B 15 (1984) 109–116.

    Article  Google Scholar 

  33. [33]

    J.H. Wei, J.C. Ma, Y.Y. Fan, N.W. Yu, S.L. Yang, S.H. Xiang, D.P. Zhu, J. Baotou Univ. Iron Steel Technol. 18 (1999) 215–221.

    Google Scholar 

  34. [34]

    M. Iguchi, K.I. Nakamura, R. Tsujino, Metall. Mater. Trans. B 29 (1998) 569–575.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Science and Technology Support Program (2006BAE03A12).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie-yu Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Wang, B. & Zhang, J. Physical simulation of mixing on a C–H2 smelting reduction reactor with different tracer feeding positions. J. Iron Steel Res. Int. (2020). https://doi.org/10.1007/s42243-020-00436-7

Download citation

Keywords

  • Smelting reduction reactor
  • Tracer feeding position
  • Double-row side blowing
  • Mean residence time
  • Relative angle
  • Horizontal angle
  • Vertical angle