Comparison study of slag corrosion resistance of MgO–MgAl2O4, MgO–CaO and MgO–C refractories under electromagnetic field

Abstract

To illuminate the corrosion behavior of MgO-based refractories under electromagnetic field (EMF), herein, the slag corrosion and penetration resistance of MgO–MgAl2O4, MgO–CaO, and MgO–C refractories were investigated using the rotary immersion slag resistance test at 1873 K for 1 h. The results showed that the order of the good slag resistance of as-tested refractories was MgO–C > MgO–CaO > MgO–MgAl2O4. The EMF accelerated the corrosion and penetration of slag to the refractories, which caused the molten slag to be easier into the refractories by natural convection and Marangoni effect. In addition, the MgO–C refractories did not show an overwhelming advantage in slag resistance because EMF impeded the formation of the dense protection layer. Consequently, in view of the present results, the MgO–C refractories are still the most promising slag line material for refining furnace among MgO–MgAl2O4, MgO–CaO, and MgO–C refractories.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. [1]

    T. Bahtli, D.Y. Hopa, V.M. Bostanci, S.Y. Yasti, Mater. Chem. Phys. 213 (2018) 14–22.

    Article  Google Scholar 

  2. [2]

    Q. Gu, F. Zhao, X.H. Liu, Q.L. Jia, Ceram. Int. 45 (2019) 12093–12100.

    Article  Google Scholar 

  3. [3]

    T.B. Zhu, Y.W. Li, S.B. Sang, Z.P. Xie, J. Eur. Ceram. Soc. 37 (2017) 1789–1797.

    Article  Google Scholar 

  4. [4]

    D.H. Ding, L.H. Lv, G.Q. Xiao, Y. Ren, S.L. Yang, P. Yang, X. Hou, Ceram. Int. 45 (2019) 6209–6215.

    Article  Google Scholar 

  5. [5]

    Y.Q. Chen, G.Q. Liu, W. Zhen, Y.X. Zhang, B.B. Fan, R. Zhang, H.X. Li, J. Alloy. Compd. 770 (2019) 356–368.

    Article  Google Scholar 

  6. [6]

    S.M. Liang, R. Schmid-Fetzer, J. Eur. Ceram. Soc. 38 (2018) 4768–4785.

    Article  Google Scholar 

  7. [7]

    H.G. Dehsheish, E. Karamian, R.G. Owsalou, S. Ghasemi-Kahrizsangi, N. Vefgh, A. Soheily, Ceram. Int. 44 (2018) 15880–15886.

    Article  Google Scholar 

  8. [8]

    D. Feng, X.D. Luo, G.D. Zhang, Z.P. Xie, Mater. Chem. Phys. 185 (2017) 1–5.

    Article  Google Scholar 

  9. [9]

    J. Poirier, Metall. Res. Technol. 112 (2015) 410–429.

    Article  Google Scholar 

  10. [10]

    J. Roy, S. Chandra, S. Maitra, Ceram. Int. 45 (2019) 19–29.

    Article  Google Scholar 

  11. [11]

    Z.Y. Zhou, P. Tang, Z.B. Hou, G.H. Wen, ISIJ Int. 59 (2019) 709–714.

    Article  Google Scholar 

  12. [12]

    H.J. Wang, R. Caballero, D. Sichen, J. Eur. Ceram. Soc. 38 (2018) 789–797.

    Article  Google Scholar 

  13. [13]

    L. Xu, M. Chen, N. Wang, X.L. Yin, J. Eur. Ceram. Soc. 37 (2017) 2737–2746.

    Article  Google Scholar 

  14. [14]

    R.K. Gupta, N. Birbilis, Corros. Sci. 92 (2015) 1–15.

    Article  Google Scholar 

  15. [15]

    B.W. Xiong, C.C. Cai, H. Wan, B.P. Lu, Mater. Des. 32 (2011) 2978–2982.

    Article  Google Scholar 

  16. [16]

    C.G. Aneziris, M. Hampel, Int. J. Appl. Ceram. Technol. 5 (2008) 469-479.

    Article  Google Scholar 

  17. [17]

    X.C. Li, B.Q. Zhu, T.X. Wang, Ceram. Int. 38 (2012) 2105–2109.

    Article  Google Scholar 

  18. [18]

    X.C. Li, B.Q. Zhu, T.X. Wang, Ceram. Int. 38 (2012) 2883–2887.

    Article  Google Scholar 

  19. [19]

    S. Mukherjee, S. Pramanik, S. Mukherjee, Interceram 63 (2014) 90–98.

    Google Scholar 

  20. [20]

    X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, S.X. Zhao, W.G. Yang, F. Qian, J.K. Yu, J. Aust. Ceram. Soc. 55 (2019) 913–920.

    Article  Google Scholar 

  21. [21]

    Y.S. Zou, A. Huang, P.F. Lian, H.Z. Gu, Interceram 67 (2018) 36–43.

    Google Scholar 

  22. [22]

    Y. Chai, M.J. Zhang, X.C. Li, Key Eng. Mater. 726 (2017) 450–454.

    Article  Google Scholar 

  23. [23]

    W.X. Zhang, A. Huang, Y.S. Zou, H.Z. Gu, L.P. Fu, G.Q. Li, J. Am. Ceram. Soc. 103 (2019) 2128–2136.

    Article  Google Scholar 

  24. [24]

    Z.F. Yuan, S.S. Xie, X.T. Yu, Y.G. Zhang, R.Y. Wang, Trans. Nonferrous Met. Soc. China 29 (2019) 1975–1982.

    Article  Google Scholar 

  25. [25]

    R. Sarkar, B.P. Nash, H.Y. Sohn, J. Eur. Ceram. Soc. 40 (2019) 529–531.

    Article  Google Scholar 

  26. [26]

    J. Fruhstorfer, J. Hubálková, T. Leißner, U.A. Peuker, C.G. Aneziris, Mater. Sci. Forum 959 (2019) 166–176.

    Article  Google Scholar 

  27. [27]

    X.L. Lin, W. Yan, S.B. Ma, Q.J. Chen, N. Li, B.Q. Han, Y.W. Wei, Ceram. Int. 43 (2017) 4984–4991.

    Article  Google Scholar 

  28. [28]

    M. Bag, S. Adak, R. Sarkar, Ceram. Int. 38 (2012) 4909–4914.

    Article  Google Scholar 

  29. [29]

    R. Sarkar, H.Y. Sohn, Metall. Mater. Trans. B 49 (2018) 1860–1882.

    Article  Google Scholar 

  30. [30]

    C. Sadik, O. Moudden, A. El-Bouari, I.E. El-Amrani, J. Asian Ceram. Soc. 4 (2018) 219–233.

    Article  Google Scholar 

  31. [31]

    A.P. Luz, F.C. Leite, M.A.M. Brito, V.C. Pandolfelli, Ceram. Int. 39 (2013) 7507–7515.

    Article  Google Scholar 

  32. [32]

    W.E. Lee, S.W. Zhang, Int. Mater. Rev. 44 (1999) 77–104.

    Article  Google Scholar 

  33. [33]

    J. Pötschke, C. Brüggmann, Steel Res. Int. 83 (2012) 637–644.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the open research fund for State Key Laboratory of Advance Refractories (Grant Nos. SKLAR201904 and SKLAR202001), and National Natural Science Foundation of China (Grant No. 51772277). In addition, the authors are particularly grateful to Dr. Xiao-ao Li of Northeastern University (China) who provided us with phase diagrams and some constructive suggestions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bei-yue Ma or Hong-xia Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Ma, B., Li, S. et al. Comparison study of slag corrosion resistance of MgO–MgAl2O4, MgO–CaO and MgO–C refractories under electromagnetic field. J. Iron Steel Res. Int. (2020). https://doi.org/10.1007/s42243-020-00421-0

Download citation

Keywords

  • MgO-based refractory
  • Corrosion
  • Basic slag
  • Electromagnetic field