Skip to main content

Advertisement

Log in

Effect of grain recrystallization on stir zone and mechanical property behavior of TRIP 780 steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Electron backscatter diffraction (EBSD) and transmission electron microscopy were used to determine the presence of retained austenite and displacive-type phase transformation in the stir zone of friction stir welding (FSW). Severe plastic deformations occurred in the stir zone where there was an increase in the temperature attributed to the FSW process and subsequently a grain recrystallization. Besides the recrystallization phenomena, the formation of grain evolution development in steels was resolved using EBSD. In addition, a tensile test was carried out in order to reveal the results of mechanical strength. It was found that the fracture zone occurred in the stir zone with an ultimate tensile strength of 587 MPa, a decrease of 267 MPa compared with that of the base metal. From this result, it is evident that the fracture exhibits numerous elongated dimples, distributed homogeneously, and certain locations contain cleavage fractures due to differences in the microstructure of the base metal. Microhardness profile tests of the welding regions were conducted, and the results showed that the stir zone was present with elevated hardness (near 350 HV). Characterization techniques revealed that the austenite-to-martensite transformation occurred in the stir zone, resulting in a loss of mechanical properties in the joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Kapustka, C. Conrardy, S. Babu, Welding J. 87 (2008) 135–148.

    Google Scholar 

  2. L. Laquerbe, J. Neutjens, Ph. Harlet, St. Mech, in: F. Caroff, P. Cantinieaux (Eds.), 41st Mechanical Working and Steel Processing Conference of Toronto, Ontario, Canada, 1999, pp. 89–99.

  3. M.Y. Zhang, F.X. Zhu, D.S. Zheng, J. Iron Steel Res. Int. 18 (2011) No. 8, 73–78.

    Article  Google Scholar 

  4. T.K. Shan, S.H. Li, W.G. Zhang, X.G. Xu, Mater. Des. 29 (2008) 1810–1816.

    Article  Google Scholar 

  5. V. Miguel, A. Martínez, J. Coello, J. Mater. Process. Technol. 213 (2013) 1703–1710.

    Article  Google Scholar 

  6. M. Ghosh, K. Kumar, R.S. Mishra, Mater. Sci. Eng. A 528 (2011) 8111–8119.

    Article  Google Scholar 

  7. F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, T.W. Nelson, J. Mater. Sci. Technol. 34 (2018) 39–57.

    Article  Google Scholar 

  8. R.S. Mishra, M.W. Mahoney, S.X. McFadden, Scripta Mater. 42 (1999) 163–168.

    Article  Google Scholar 

  9. D. Lohwasser, Z. Chen, Friction stir welding: from basics to applications, Woodhead Publishing in Materials, Oxford, UK, 2010.

    Book  Google Scholar 

  10. G. Venkateswarlu, A.K. Singh, J. Davidson, G.R. Tagore, J. Mater. Res. Technol. 2 (2013) 135–140.

    Article  Google Scholar 

  11. M.M. Song, B. Song, S.H. Zhang, Z.B. Yang, Z.L. Xue, S.Q. Song, R.S. Xu, Z.B. Tong, J. Iron Steel Res. Int. 25 (2018) 1033–1042.

    Article  Google Scholar 

  12. H.H. Cho, S.H. Kang. S.H. Kim, K.H. Oh, H.J. Kim, W.S. Chang, H.N. Han, Mater. Des. 34 (2012) 258–267.

  13. V.F. Zackay, E.R. Parker, D. Fahr, R. Busch, Trans. ASM Quart. 60 (1967) 252–259.

    Google Scholar 

  14. B.R. Banerjee, J.M. Capenos, Application of fracture toughness parameters to structural metals, Gordon and Breach Science Publishers, New York, USA, 1966.

    Google Scholar 

  15. A. Z. Hanzaki, P.D. Hodgson, S. Yue, Metall. Mater. Trans. A 28 (1997) 2405–2414.

    Article  Google Scholar 

  16. L. Cui, H. Fujii, N. Tsuji, K. Nakata, K. Nogi, R. Ikeda, M. Matsushita, ISIJ Int. 47 (2007) 299–306.

    Article  Google Scholar 

  17. Y.S. Sato, H. Yamanoi, H. Kokawa, T. Furuhara, Scripta Mater. 57 (2007) 557–560.

    Article  Google Scholar 

  18. Y.D. Chung, H. Fujii, R. Ueji, N. Tsuji, Scripta Mater. 63 (2010) 223–226.

    Article  Google Scholar 

  19. A.K. De, J.G. Speer, D.K. Matlock, Adv. Mater. Processes 161 (2003) 27–30.

    Google Scholar 

  20. G.Y. Pérez-Medina, H.F. López, Arch. Metall. Mater. 59 (2014) 1437–1442.

    Article  Google Scholar 

  21. K. Ding, H.J. Ji, Q.L. Zhang, X. Liu, P. Wang, X.H. Li, L. Zhang, Y.L. Gao, J. Iron Steel Res. Int. 25 (2018) 839–846.

    Article  Google Scholar 

  22. T.C. Lomholt, Microstructure evolution during friction stir spot welding of TRIP steel, Technology University of Denmark, Denmark, 2013.

  23. S. Mironov, Y. Sato, H. Kokawa, Application of EBSD to microstructural control in friction stir welding/processing, Springer Science, 2009, pp. 291–300.

  24. S. Mironov, Y.S. Sato, S. Yoneyama, H. Kokawa, H.T. Fujii, S. Hirano, Mater. Sci. Eng. A 717 (2018) 26–33.

    Article  Google Scholar 

  25. M. De Meyer, D. Vanderschueren, B. Comaan, in: MWSP (Eds.), The Influence of Al on the Properties of Cold Rolled C-Mn-Si TRIP Steel, Iron and Steel Society AIME, Chicago, USA, 1999, pp. 265–276.

  26. J. Chen, K. Sand, M.S. Xia, C. Ophus, R. Mohammadi, M.L. Kuntz, Metall. Mater. Trans. A 39 (2008) 593–603.

    Article  Google Scholar 

  27. H.G. Tehrani-Moghaddam, H.R. Jafarian, M.T Salehi, A.R. Eivani, Mater. Sci. Eng. A 718 (2018) 335–344.

    Article  Google Scholar 

  28. H. Bhadheshia, Bainite in steels, 2nd ed., IOM Communications Ltd., London, UK, 2001.

    Google Scholar 

  29. A. Grajcar, M. Rozanski, S. Stano, A. Kowalski, J. Mater. Eng. Perform. 23 (2014) 3400–3406.

    Article  Google Scholar 

  30. S. Mironov, Y.S. Sato, H. Kokawa, Acta Mater. 56 (2008) 2602–2614.

    Article  Google Scholar 

  31. R. Petrov, L. Kestens, A. Wasilkowska, Y. Houbaert, Mater. Sci. Eng. A 447 (2007) 285–297.

    Article  Google Scholar 

  32. G. Krauss, Steels-processing, structure, and performance, ASM International, Ohio, USA, 2015.

    Book  Google Scholar 

  33. T. Maki, in: E. Pereloma, D. Edmonds (Eds.), Phase Transformations in Steels, Woodhead Publishing, UK, 2012, pp. 34–58

    Chapter  Google Scholar 

  34. F.C. Campbell, Fatigue and fracture-understanding basics, ASM International, Ohio, USA, 2012.

    Google Scholar 

  35. J. Xiong, X. Yang, W. Lin, K. Liu, J. Manuf. Processes 32 (2018) 280–287.

    Article  Google Scholar 

  36. A. Laureys, T. Depover, R. Petrov, K. Verbeken, Mater. Charact. 112 (2016) 169–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladys Pérez-Medina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Medina, G., Lopez, H., Miranda-Pérez, A. et al. Effect of grain recrystallization on stir zone and mechanical property behavior of TRIP 780 steel. J. Iron Steel Res. Int. 27, 188–196 (2020). https://doi.org/10.1007/s42243-019-00309-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00309-8

Keywords

Navigation