Skip to main content
Log in

Effect of W addition on hot deformation and precipitation behaviors of 19Cr2Mo ferritic stainless steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The hot deformation behavior of 19Cr2Mo and 19Cr2Mo1W ferritic stainless steels was studied by using uniaxial hot compression tests on a thermomechanical simulator. The hot deformation was carried out at temperature ranging from 800 to 1150 °C and strain rates from 0.01 to 10 s−1. Microstructure change and precipitation behavior during hot deformation were investigated by optical microscopy, electron probe microanalysis and transmission electron microscopy. The effects of temperature and strain rate on deformation behavior were obtained by a classical equation in Zener–Hollomon parameter. Since W addition to 19Cr2Mo1W steel could refine the size of the precipitates to enhance the precipitation strengthening and also had the effect of solution strengthening, the dynamic recrystallization, dynamic recovery and grain growth of 19Cr2Mo1W ferritic stainless steel were inhibited to a certain extent. The precipitate size of 19Cr2Mo1W steel was finer than that of 19Cr2Mo steel under the same deformation condition, which is due to the fact that the atomic diffusion is suppressed by W addition. W addition increased the amount of Laves phase in 19Cr2Mo1W steel, and thus Laves phase in 19Cr2Mo1W steel could be formed at higher temperature than that in 19Cr2Mo steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.K. Kim, Y.H. Kim, S.H. Uhmb, J.S. Lee, K.Y. Kim, Corros. Sci. 51 (2009) 2716–2723.

    Article  Google Scholar 

  2. D. Oh, K. Han, S. Hong, C. Lee, Mater. Sci. Eng. A 555 (2012) 44–51.

    Article  Google Scholar 

  3. L. Faivre, P.O. Santacreu, A. Acher, Mater. High Temp. 30 (2013) 36–42.

    Article  Google Scholar 

  4. M. Ekström, S. Jonsson, Mater. Sci. Eng. A 616 (2014) 78–87.

    Article  Google Scholar 

  5. L.L. Wei, L.Q. Chen, M.Y. Ma, H.L. Liu, R.D.K. Misra, Mater. Chem. Phys. 205 (2018) 508–517.

    Article  Google Scholar 

  6. Y.T. Chiu, C.K. Lin, J. Power Sources 198 (2012) 149–157.

    Article  Google Scholar 

  7. A. Safikhani, M. Aminfard, Int. J. Hydrogen Energy 39 (2014) 2286–2296.

    Article  Google Scholar 

  8. J.S. Kim, H.S. Kwon, Corrosion 55 (1999) 512–521.

    Article  Google Scholar 

  9. F. Abe, Mater. Sci. Eng. A 319 (2001) 770–773.

    Article  Google Scholar 

  10. J. Froitzheim, G.H. Meier, L. Niewolak, P.J. Ennis, H. Hattendorf, L. Singheiser, W.J. Quadakkers, J. Power Sources 178 (2008) 163–173.

    Article  Google Scholar 

  11. W. Du, L.Z. Jiang, Q.S. Sun, Z.Y. Liu, X. Zhang, J. Iron Steel Res. Int. 17 (2010) No. 6, 47–52.

    Article  Google Scholar 

  12. F. Gao, Z.Y. Liu, H.T. Liu, G.D. Wang, Mater. Charact. 75 (2013) 93–100.

    Article  Google Scholar 

  13. M. Masoumi, F.E.U. Reis, M.O.D. Castro, M. Béresa, H.F.G.D. Abreua, J. Mater. Res. Tech. 6 (2017) 232–240.

    Article  Google Scholar 

  14. F.C. Ren, F. Chen, J. Chen, X.Y. Tang, J. Manuf. Process. 31 (2018) 640–649.

    Article  Google Scholar 

  15. S.V. Mehtonen, L.P. Karjalainen, D.A. Porter, Mater. Sci. Eng. A 571 (2013) 1–12.

    Article  Google Scholar 

  16. G.M. Zhang, Z.J. Zhou, H.Y. Sun, L. Zou, M. Wang, S.F. Li, J. Nucl. Mater. 455 (2014) 139–144.

    Article  Google Scholar 

  17. X.Z. Zhang, X.J. Wu, R. Liu, J. Liu, M.X. Yao, Mater. Sci. Eng. A 706 (2017) 279–286.

    Article  Google Scholar 

  18. D. Oh, K. Hana, S. Hongb, C. Lee, Proc. Eng. 10 (2011) 383–389.

    Article  Google Scholar 

  19. Y.T. Chiu, C.K. Lin, J.C. Wu, J. Power Sources 196 (2011) 2005–2012.

    Article  Google Scholar 

  20. Y. Cao, H.S. Di, R.D.K. Misra, X. Yi, J.C. Zhang, T.J. Ma, Mater. Sci. Eng. A 593 (2014) 111–119.

    Article  Google Scholar 

  21. F. Gao, F.X. Yu, H.T. Liu, Z.Y. Liu, J. Iron Steel Res. Int. 22 (2015) 827–836.

    Article  Google Scholar 

  22. C. Zhang, Z.Y. Liu, G.D. Wang, J. Mater. Process. Technol. 211 (2011) 1051–1059.

    Article  Google Scholar 

  23. S.M. Kim, Y.S. Chun, S.Y. Won, Y.H. Kim, C.S. Lee, Metall. Mater. Trans. A 44 (2013) 1331–1339.

    Article  Google Scholar 

  24. A.Y. Churyumov, M.G. Khomutov, A.N. Solonin, A.V. Pozdniakov, T.A. Churyumova, B.F. Minyaylo, Mater. Des. 74 (2015) 44–54.

    Article  Google Scholar 

  25. D.R. Askeland, P.P. Fulay, Essentials of materials science and engineering, 2nd ed., CENGAGE Learning, Boston, 2010.

    Google Scholar 

  26. N Fujita, K. Ohmura, A. Yamamoto, Mater. Sci. Eng. A 351 (2003) 272–281.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the joint financial support from the National Natural Science Foundation of China and Baowu Steel Group Co., Ltd. (Grant No. U1660205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-qing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Hl., Ma, My., Liu, Ll. et al. Effect of W addition on hot deformation and precipitation behaviors of 19Cr2Mo ferritic stainless steel. J. Iron Steel Res. Int. 26, 425–434 (2019). https://doi.org/10.1007/s42243-019-00233-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00233-x

Keywords

Navigation