Skip to main content
Log in

Crack defect of tailor rolled blank in deep drawing process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The deformation process of tailor rolled blank (TRB) is different from that of a monolithic blank as a result of the variable thickness in the rolling direction, and thus, the mechanism of the crack phenomenon needs to be further studied. The crack defect of TRB square box was studied by numerical simulation and stamping experiment. The stress state of TRB square box was elaborated. On this basis, the forming characteristics of TRB square box were summarized. The effects of blank size and blank holder force (BHF) on the thickness thinning of TRB were discussed. Finally, the mechanism of the crack defect for TRB square box was revealed. Results indicate that non-uniformity is the most prominent characteristic during forming of TRB square box. The larger the blank size and BHF on the thinner side are, the more inclined TRB is to crack. Excessive BHF or insufficient BHF on the thicker side can also lead to the occurrence of the crack defect. BHF on the thinner side slightly greater than that on the thicker side (40 kN on the thinner side and 20 kN on the thicker side) is advantageous to restrict the excessive thickness thinning of TRB and acquire a better formability. The location inclined to crack for TRB square box is the round corner of the wall on the thinner side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Krux, W. Homberg, M. Kleiner, Steel Res. Int. 76 (2005) 890–896.

    Article  Google Scholar 

  2. N. Ryabkov, F. Jackel, K. van Putten, G. Hirt, Int. J. Mater. Form. 1 (2008) No. S1, 391–394.

    Article  Google Scholar 

  3. G. Hirt, D.H. Dávalos-Julca, Steel Res. Int. 83 (2012) 100–105.

    Article  Google Scholar 

  4. M. Merklein, M. Johannes, M. Lechner, A. Kuppert, J. Mater. Process. Technol. 214 (2014) 151–164.

    Article  Google Scholar 

  5. R. Kopp, C. Wiedner, A. Meyar, Int. Sheet Met. Rev. 4 (2005) 20–24.

    Google Scholar 

  6. X.H. Liu, J. Iron Steel Res. Int. 18 (2011) No. 1, 1–7.

    Article  Google Scholar 

  7. X.H. Liu, Q.L. Zhao, L.Z. Liu, Acta Metall. Sin. (Engl. Lett.) 27 (2014) 483–493.

    Article  Google Scholar 

  8. P. Groche, M. Mirtsch, Steel Res. Int. 83 (2012) 106–114.

    Article  Google Scholar 

  9. L.J. Chen, B. Han, Y. Yang, Q.W. Huang, X.L. Gan, Steel Rolling 30 (2013) No. 5, 39–43.

    Google Scholar 

  10. M. Urban, M. Krahn, G. Hirt, R. Kopp, J. Mater. Process. Technol. 177 (2006) 360–363.

    Article  Google Scholar 

  11. D. Kim, J. Kim, Y. Lee, H. Kwak, Y. Ryu, B. Han, Rare Metals 25 (2006) No. S2, 111–117.

    Article  Google Scholar 

  12. A. Meyer, B. Wietbrock, G. Hirt, Int. J. Mach. Tools Manuf. 48 (2008) 522–531.

    Article  Google Scholar 

  13. H.W. Zhang, L.Z. Liu, P. Hu, X.H. Liu, J. Iron Steel Res. Int. 19 (2012) No. 9, 8–12.

    Article  Google Scholar 

  14. Y.Q. Wang, J. Li, Y.X. Chen, Automobile Technology & Material (2013) No. 6, 10–13.

    Google Scholar 

  15. H.W. Zhang, X.H. Liu, L.Z. Liu, P. Hu, J.L. Wu, Acta Metall. Sin. (Engl. Lett.) 28 (2015) 1198–1204.

    Article  Google Scholar 

  16. X.J. Bao, Experimental investigation and numerical simulation of springback in tailor rolled blanks bending, Shanghai Jiaotong University, Shanghai, 2003.

    Google Scholar 

  17. H. Zhao, Study on the influencing factors in stamping forming of polyline weld tailor-welded blanks, Harbin Institute of Technology, Harbin, 2010.

    Google Scholar 

  18. H.W. Zhang, X.H. Liu, L.Z. Liu, P. Hu, J.L. Wu, J. Iron Steel Res. Int. 23 (2016) 185–189.

    Article  Google Scholar 

  19. L.H. Lang, D.C. Kang, S.H. Zhang, Z.R. Wang, S.J. Yuan, K.B. Nielsen, J. Dancket, Acta Metall. Sin. (Engl. Lett.) 13 (2000) 476–480.

    Google Scholar 

  20. X.D. Ma, Y.P. Guan, Trans. Nonferrous Met. Soc. China 26 (2016) 228–236.

    Article  Google Scholar 

  21. Y.F. Jiang, X.L. Ding, Y.Y. Zhu, G.D. Yuan, F. Wang, China Mech. Eng. 19 (2008) 2118–2121.

    Google Scholar 

  22. X.D. Ma, Y.P. Guan, L. Yang, Chin. J. Mech. Eng. 28 (2015) 911–918.

    Article  Google Scholar 

  23. T. Wen, P.J. Jia, G. Fang, P. Liu, Hot Working Technology 39 (2010) No. 23, 107–109.

    Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (51475086), Natural Science Foundation of Hebei Province (E2016501118), Fundamental Research Funds for the Central Universities (N172304036) and Science and Technology Research Project for Higher School of Hebei Province (ZD2017315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hw., Wu, Jl. & Wang, Xg. Crack defect of tailor rolled blank in deep drawing process. J. Iron Steel Res. Int. 25, 1237–1243 (2018). https://doi.org/10.1007/s42243-018-0184-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0184-2

Keywords

Navigation