Skip to main content
Log in

Effect of high Na2O addition on distribution of phosphorus in low-basicity converter slag

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to improve the dephosphorization efficiency of low-basicity converter slag and decrease the consumption of solid CaO, the effect of high Na2O addition (0–15 mass%) on the distribution of P2O5 between solid solution and matrix phase was investigated. The thermodynamic properties of slag samples were calculated by FactSage 7.0 software. Then, the dissolution behavior of phosphorus element from slag was studied. The results show that the mass fraction of 2CaO·SiO2–2CaO·Na2O·P2O5 solid solution increases when the Na2O content is increased in slag. However, the amount of formed solid solution changes little when the Na2O addition is more than 10 mass%. Moreover, the content of Na2O in solid solution would reach saturation when adding 15 mass% Na2O into the slag. With the increase in Na2O content in slag, the distribution ratio of P2O5 between solid solution and matrix phase increases. The values are evidently higher than the results reported in the literature. Meanwhile, the activity of P2O5 in matrix phase and the activity coefficient of P2O5 in solid solution are decreased with increasing the Na2O content in slag. Furthermore, the dissolution ratio of phosphorus in citric acid solution could be improved by adding Na2O into slag, but the increment of dissolution ratio would decrease when the Na2O content exceeds 10 mass% in slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. X. Yang, H. Matsuura, F. Tsukihashi, ISIJ Int. 49 (2009) 1298–1307.

    Article  Google Scholar 

  2. N. Maruoka, A. Ishikawa, H. Shibata, S.Y. Kitamura, High Temp. Mater. Proc. 32 (2013) 15–24.

    Article  Google Scholar 

  3. W. Wu, S.F. Dai, Y. Liu, J. Iron Steel Res. Int. 24 (2017) 908–915.

    Article  Google Scholar 

  4. M. Zhong, H. Matsuura, F. Tsukihashi, ISIJ Int. 55 (2015) 2283–2288.

    Article  Google Scholar 

  5. X. Yang, H. Matsuura, F. Tsukihashi, ISIJ Int. 50 (2010) 702–711.

    Article  Google Scholar 

  6. S.Y. Kitamura, K.I. Miyamoto, H. Shibata, N. Maruoka, M. Matsuo, ISIJ Int. 49 (2009) 1333–1339.

    Article  Google Scholar 

  7. X.L. Pan, J.Y. Li, M. Guo, M. Zhang, J. Iron Steel Res. 29 (2017) 474–480.

    Google Scholar 

  8. F. Yang, X.G. Bi, J.D. Zhou, J. Iron Steel Res. 28 (2016) No. 3, 29–34.

    Google Scholar 

  9. W. Fix, H. Heymann, R. Heinke, J. Am. Ceram. Soc. 52 (1969) 346–347.

    Article  Google Scholar 

  10. R. Inoue, H. Suito, ISIJ Int. 46 (2006) 174–179.

    Article  Google Scholar 

  11. N. Wang, Z.G. Liang, M. Chen, Z.S. Zou, J. Iron Steel Res. Int. 18 (2011) No. 11, 17–19.

    Article  Google Scholar 

  12. N. Wang, Z.G. Liang, M. Chen, Z.S. Zou, J. Iron Steel Res. Int. 18 (2011) No. 12, 22–26.

    Article  Google Scholar 

  13. L. Jiang, J. Diao, X.M. Yan, B. Xie, Y. Ren, T. Zhang, G.Z. Fan, ISIJ Int. 55 (2015) 564–569.

    Article  Google Scholar 

  14. L. Lin, Y.P. Bao, M. Wang, W. Jiang, H.M. Zhou, J. Iron Steel Res. Int. 21 (2014) 496–502.

    Article  Google Scholar 

  15. J. Diao, B. Xie, Y.H. Wang, X. Guo, ISIJ Int. 52 (2012) 955–959.

    Article  Google Scholar 

  16. C.M. Du, X. Gao, S. Ueda, S.Y. Kitamura, ISIJ Int. 57 (2017) 487–496.

    Article  Google Scholar 

  17. M. Numata, N. Maruoka, S.J. Kim, S.Y. Kitamura, ISIJ Int. 54 (2014) 1983–1990.

    Article  Google Scholar 

  18. F. Pahlevani, S.Y. Kitamura, H. Shibata, N. Maruoka, ISIJ Int. 50 (2010) 822–829.

    Article  Google Scholar 

  19. K.I. Shimauchi, S.Y. Kitamura, H. Shibata, ISIJ Int. 49 (2009) 505–511.

    Article  Google Scholar 

  20. H.M. Zhou, Y.P. Bao, L. Lin, Steel Res. Int. 84 (2013) 863–869.

    Article  Google Scholar 

  21. S.L. Xie, W.L. Wang, Y.Z. Liu, H. Matsuura, ISIJ Int. 54 (2014) 766–773.

    Article  Google Scholar 

  22. C.M. Du, X. Gao, S.J. Kim, S. Ueda, S.Y. Kitamura, ISIJ Int. 56 (2016) 1436–1444.

    Article  Google Scholar 

  23. K. Kunisada, H. Iwai, Trans. ISIJ 27 (1987) 263–269.

    Article  Google Scholar 

  24. H. Suito, R. Inoue, Trans. ISIJ 24 (1984) 47–53.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51604003, 51704010), Natural Science Research Project of Anhui Province Universities (KJ2016A089) and Key Laboratory Open Project Fund of Metallurgical Emission Reduction and Resources Recycling (Anhui University of Technology), Ministry of Education (JKF18-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning-ning Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C., Lv, Nn., Yang, Jx. et al. Effect of high Na2O addition on distribution of phosphorus in low-basicity converter slag. J. Iron Steel Res. Int. 26, 42–51 (2019). https://doi.org/10.1007/s42243-018-0096-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0096-1

Keywords

Navigation