Skip to main content
Log in

Microscopic damage mechanism of SA508 Gr3 steel in ultra-high temperature creep

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The lower head of reactor pressure vessel (RPV) will endure a great temperature gradient above the phase transition temperature, and the creep and fracture will be the primary failure mode for the RPV material in such a situation. The interrupted creep tests were performed on a typical RPV material, SA508 Gr3 steel, at 800 °C. The microstructure of different creep stages was examined by scanning electron microscopy and transmission electron microscopy. The results showed that the microscopic damage is mainly induced by creep cavities and coarse second-phase particles. Furthermore, the volume fractions of creep cavities and coarse second-phase particles show a linear relationship with the extended creep time. The second-phase particles are determined to be MoC in the second creep stage and Mo2C in the third creep stage, according to the results of selected-area electron diffraction pattern. Combined with energy-dispersive spectrum analysis, the segregation of precipitates caused by the migration of atoms is finally unveiled, which leads to the coarsening of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Hashimoto, S. Ugawa, K. Nanko, K. Shichi, Sci. Rep. 2 (2012) 416.

    Article  Google Scholar 

  2. S. M. Friedman, Bulletin Atom. Sci. 67 (2011) 55–65.

    Article  Google Scholar 

  3. G. Steinhauser, A. Brandl, T. E. Johnson, Sci. Total Environ. 470 (2014) 800–817.

    Article  Google Scholar 

  4. T. G. Theofanous, C. Liu, S. Additon, S. Angelin, O. Kymäläinen, T. Salmassi, Nucl. Eng. Des. 169 (1997) 1–48.

    Article  Google Scholar 

  5. J. Zhu, J. Mao, L. Li, S. Bao, Z. Gao, J. Mech. Eng. 53 (2016) 45–52.

    Article  Google Scholar 

  6. J. Zhu, J. Mao, Y. Li, S. Bao, Z. Gao, J. Chin. Soc. Power Eng. 37 (2017) 335–340.

    Google Scholar 

  7. J. Zhu, S. Bao, Y. Li, Z. Gao, in: ASME 2014 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, Anaheim, 2014, pp. 1–7.

  8. J. Mao, J. Zhu, S. Bao, L. Luo, Z. Gao, J. Press. Vess. Tech. 139 (2016) 107–116.

    Article  Google Scholar 

  9. J. Mao, X. Li, S. Bao, L. Luo, Z. Gao, Nucl. Eng. Des. 316 (2017) 63–74.

    Article  Google Scholar 

  10. C.C. Sainte, Report DMT/95-236, CEA Saclay, 1995.

  11. D. S. Sui, F. Chen, P. P. Zhang, Z. S. Cui, J. Iron Steel Res. Int. 21 (2014) 1022–1029.

    Article  Google Scholar 

  12. J. H. Kim, E. P. Yoon, J. Kor. Inst. Met. Mater. 36 (1998) 1329–1337.

    Google Scholar 

  13. S. Kim, S. Y. Kang, S. Lee, S. Oh, S. Kwon, O. Kim, J. Hong, Metall. Mater. Trans. A 31 (2000) 1107–1119.

    Article  Google Scholar 

  14. Z. G. Xie, Y. M. He, J. G. Yang, Z. Gao, Trans. Tech. Publications 853 (2016) 153–157.

    Google Scholar 

  15. Y. Q. Deng, L. H. Zhu, Q. J. Wang, F. M. Zou, J. Iron Steel Res. 19 (2007) 46–50.

    Google Scholar 

  16. Q. Zhao, X. K. Peng, R. Wang, J. Iron Steel Res. 22 (2010) 56–58.

    Article  Google Scholar 

  17. Z. Xie, J. Yang, Y. He, Z. Gao, Nucl. Power Eng. 5 (2016) 33–39.

    Google Scholar 

  18. J. Wu, The heat treatment effect on microstructure and mechanical properties of A508-3 steel, Harbin Institute of Technology, Harbin, 2009.

    Google Scholar 

  19. Z. Sheng, H. Xiao, F. Peng, Nucl. Power Eng. 9 (1988) 49–53.

    Google Scholar 

  20. A. Argon, Strengthening mechanisms in crystal plasticity, Oxford University Press, Oxford, 2007.

    Book  Google Scholar 

  21. A. Mallick, Comp. Mater. Sci. 67 (2013) 27–34.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51575489) and National 13th Five-Year Key Technologies R&D Program (No. 2016YFC0801902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-liang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Zg., He, Ym., Yang, Jg. et al. Microscopic damage mechanism of SA508 Gr3 steel in ultra-high temperature creep. J. Iron Steel Res. Int. 25, 453–459 (2018). https://doi.org/10.1007/s42243-018-0055-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0055-x

Keywords

Navigation