Model for Ruhrstahl–Heraeus (RH) decarburization process

  • Dong-ping Zhan
  • Yang-peng Zhang
  • Zhou-hua Jiang
  • Hui-shu Zhang
Original Paper
  • 4 Downloads

Abstract

A mathematical model was established to predict the carbon content of ultralow carbon steel in the Ruhrstahl–Heraeus (RH) process. The model was solved using the fourth-order Runge–Kutta method and assumed that the volume of steel partaking in the reaction depends on the decarburization mechanism. After analyzing the decarburization process using the proposed model, the following conclusions were drawn. First, the initial carbon and oxygen contents in the RH degasser should be stabilized in the range of (200–350) × 10−6 and (500–700) × 10−6, respectively. Second, in the initial stage, the pressure should be reduced as quickly as possible. Third, oxygen blowing should begin as early as possible when the forced decarburization is needed and the minimum oxygen flow rate should be 0.1923 m3/(t min). Finally, expanding the diameter of the snorkel tube from 480 to 600 mm clearly enhances the decarburization rate.

Keywords

RH Model Carbon content Fourth-order Runge–Kutta Ultralow carbon steel Decarburization 

Notes

Acknowledgements

The authors would like to acknowledge the National Natural Science Foundation of China (51574063), Fundamental Research Funds for the Central Universities (N150204012, N152306001), and Program for Liaoning Excellent Talents in University (LJQ2015056).

References

  1. [1]
    X.G. Ai, C.S. Wang, F.T. Meng, S.L. Li, H.X. Liu, Y. Gan, J. Iron Steel Res. 28 (2016) No. 1, 20–24.Google Scholar
  2. [2]
    K. Feng, D.F. He, A.J. Xu, H.B. Wang, J. Iron Steel Res. Int. 22 (2015) No. S1, 68–74.CrossRefGoogle Scholar
  3. [3]
    Y.N. Wang, Y.P. Bao, H. Cui, B. Chen, C.X. Ji, J. Iron and Steel Res. Int. 19 (2012) No. 3, 1–5.CrossRefGoogle Scholar
  4. [4]
    C.F. Lv, D.L. Shang, L. Kang, W.W. Zhang, G.H. Chang, J. Iron Steel Res. 26 (2014) No. 6, 11–16.Google Scholar
  5. [5]
    K. Yamaguchi, Y. Kishimoto, T. Sakuraya, T. Fujii, M. Aratani, H. Nishikawa, ISIJ Int. 32 (1992) 126–135.CrossRefGoogle Scholar
  6. [6]
    M. Takahashi, H. Matsumoto, T. Saito, ISIJ Int. 35 (1995) 1452–1458.CrossRefGoogle Scholar
  7. [7]
    B. Deo, S. Gupta, Steel Res. Int. 67 (1996) 7–11.CrossRefGoogle Scholar
  8. [8]
    Y. Higuchi, H. Ikenaga, Y. Shirota, Tetsu-to-Hagane. 84 (1998) 709–714.CrossRefGoogle Scholar
  9. [9]
    H. Saint-Raymond, D. Huin, F. Stouvenot, Mater. Trans. JIM 41 (2000) 17–21.CrossRefGoogle Scholar
  10. [10]
    M.Y. Zhu, Z.Z. Huang, Acta Metall. Sin. 37 (2001) 91–94.Google Scholar
  11. [11]
    Y.G. Park, K.W. Yi, ISIJ Int. 43 (2003) 1403–1409.CrossRefGoogle Scholar
  12. [12]
    X.D. Yin, Z.Z. Huang, W.B. Gu, Acta Metall. Sin. 41 (2005) 876–880.Google Scholar
  13. [13]
    C.J. Han, L.Q. Ai, B.S. Liu, J. Zhang, Y.P. Bao, K.K. Cai, J. Univ. Sci. Technol. Beijing 13 (2006) 218–221.CrossRefGoogle Scholar
  14. [14]
    B.S. Liu, G.S. Zhu, H.X. Li, B.H. Li, Y. Cui, A.M. Cui, Int. J. Miner. Metall. Mater. 17 (2010) 22–27.CrossRefGoogle Scholar
  15. [15]
    M.A. Van Ende, Y.M. Kim, M.K. Cho, J. Choi, I.H. Jung, Metall. Mater. Trans. B 42 (2011) 477–489.CrossRefGoogle Scholar
  16. [16]
    C.W. Li, G.G. Cheng, X.H. Wang, G.S. Zhu, A.M. Cui, J. Iron Steel Res. Int. 19 (2012) No. 5, 23–29.CrossRefGoogle Scholar
  17. [17]
    J.M. Zhang, L. Liu, X.Y. Zhao, S.W. Lei, Q.P. Dong, ISIJ Int. 54 (2014) 1560–1569.CrossRefGoogle Scholar
  18. [18]
    P.H. Li, Q.J. Wu, W.H. Hu, J.S. Ye, J. Iron Steel Res. Int. 22 (2015) No. S1, 63–67.CrossRefGoogle Scholar
  19. [19]
    D.Q. Geng, J.X. Zheng, K. Wang, P. Wang, R.Q. Liang, H.T. Liu, H. Lei, J.C. He, Metall. Mater. Trans. B 46 (2015) 1484–1493.CrossRefGoogle Scholar
  20. [20]
    J.X. Chen, Common chart and data for steelmaking, 2nd edition, Metallurgical Industry Press, Beijing, 2010.Google Scholar
  21. [21]
    J.H. Wei, Journal of Shanghai University 7 (2003) 97–117.CrossRefGoogle Scholar
  22. [22]
    Y.S. Chen, Y.D. He, Z.Z. Huang, Journal of Inner Mongolia University of Science and Technology 26 (2007) 1–5.Google Scholar
  23. [23]
    O. Nakamura, M. Numata, K. Takatani, Tetsu-to-Hagane 101 (2015) 123–128.CrossRefGoogle Scholar
  24. [24]
    T. Kuwabara, K. Umezawa, K. Mori, H. Watanabe, Trans. ISIJ 28 (1988) 305–314.CrossRefGoogle Scholar
  25. [25]
    Y.H. Li, Y.P. Bao, M. Wang, R. Wang, D.C. Tang, Ironmak. Steelmak. 42 (2015) 366–372.CrossRefGoogle Scholar
  26. [26]
    M. Wang, Y.P. Bao, Q. Yang, L.H. Zhao, L. Lin, Int. J. Miner. Metall. Mater. 22 (2015) 1252–1259.CrossRefGoogle Scholar
  27. [27]
    M. Wang, Y.P Bao, L.H Zhao, Q. Yang, L. Lin, ISIJ Int. 55 (2015) 1652–1660.CrossRefGoogle Scholar
  28. [28]
    R. Ding, B. Blanpain, P.T. Jones, P. Wollants, Metall. Mater. Trans. B 31 (2000) 197–206.CrossRefGoogle Scholar
  29. [29]
    F. Jiang, G.G. Cheng, Ironmak. Steelmak. 39 (2012) 386–390.CrossRefGoogle Scholar
  30. [30]
    D.Q. Geng, H. Lei, J.C. He, ISIJ Int. 52 (2012) 1036–1044.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Dong-ping Zhan
    • 1
    • 2
  • Yang-peng Zhang
    • 3
  • Zhou-hua Jiang
    • 1
  • Hui-shu Zhang
    • 4
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Shenyang Northeastern Institute of Metal Materials Co., Ltd.ShenyangChina
  3. 3.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  4. 4.Metallurgical Engineering CollegeLiaoning Institute of Science and TechnologyBenxiChina

Personalised recommendations