Skip to main content
Log in

Model for Ruhrstahl–Heraeus (RH) decarburization process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A mathematical model was established to predict the carbon content of ultralow carbon steel in the Ruhrstahl–Heraeus (RH) process. The model was solved using the fourth-order Runge–Kutta method and assumed that the volume of steel partaking in the reaction depends on the decarburization mechanism. After analyzing the decarburization process using the proposed model, the following conclusions were drawn. First, the initial carbon and oxygen contents in the RH degasser should be stabilized in the range of (200–350) × 10−6 and (500–700) × 10−6, respectively. Second, in the initial stage, the pressure should be reduced as quickly as possible. Third, oxygen blowing should begin as early as possible when the forced decarburization is needed and the minimum oxygen flow rate should be 0.1923 m3/(t min). Finally, expanding the diameter of the snorkel tube from 480 to 600 mm clearly enhances the decarburization rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.G. Ai, C.S. Wang, F.T. Meng, S.L. Li, H.X. Liu, Y. Gan, J. Iron Steel Res. 28 (2016) No. 1, 20–24.

    Google Scholar 

  2. K. Feng, D.F. He, A.J. Xu, H.B. Wang, J. Iron Steel Res. Int. 22 (2015) No. S1, 68–74.

    Article  Google Scholar 

  3. Y.N. Wang, Y.P. Bao, H. Cui, B. Chen, C.X. Ji, J. Iron and Steel Res. Int. 19 (2012) No. 3, 1–5.

    Article  Google Scholar 

  4. C.F. Lv, D.L. Shang, L. Kang, W.W. Zhang, G.H. Chang, J. Iron Steel Res. 26 (2014) No. 6, 11–16.

    Google Scholar 

  5. K. Yamaguchi, Y. Kishimoto, T. Sakuraya, T. Fujii, M. Aratani, H. Nishikawa, ISIJ Int. 32 (1992) 126–135.

    Article  Google Scholar 

  6. M. Takahashi, H. Matsumoto, T. Saito, ISIJ Int. 35 (1995) 1452–1458.

    Article  Google Scholar 

  7. B. Deo, S. Gupta, Steel Res. Int. 67 (1996) 7–11.

    Article  Google Scholar 

  8. Y. Higuchi, H. Ikenaga, Y. Shirota, Tetsu-to-Hagane. 84 (1998) 709–714.

    Article  Google Scholar 

  9. H. Saint-Raymond, D. Huin, F. Stouvenot, Mater. Trans. JIM 41 (2000) 17–21.

    Article  Google Scholar 

  10. M.Y. Zhu, Z.Z. Huang, Acta Metall. Sin. 37 (2001) 91–94.

    Google Scholar 

  11. Y.G. Park, K.W. Yi, ISIJ Int. 43 (2003) 1403–1409.

    Article  Google Scholar 

  12. X.D. Yin, Z.Z. Huang, W.B. Gu, Acta Metall. Sin. 41 (2005) 876–880.

    Google Scholar 

  13. C.J. Han, L.Q. Ai, B.S. Liu, J. Zhang, Y.P. Bao, K.K. Cai, J. Univ. Sci. Technol. Beijing 13 (2006) 218–221.

    Article  Google Scholar 

  14. B.S. Liu, G.S. Zhu, H.X. Li, B.H. Li, Y. Cui, A.M. Cui, Int. J. Miner. Metall. Mater. 17 (2010) 22–27.

    Article  Google Scholar 

  15. M.A. Van Ende, Y.M. Kim, M.K. Cho, J. Choi, I.H. Jung, Metall. Mater. Trans. B 42 (2011) 477–489.

    Article  Google Scholar 

  16. C.W. Li, G.G. Cheng, X.H. Wang, G.S. Zhu, A.M. Cui, J. Iron Steel Res. Int. 19 (2012) No. 5, 23–29.

    Article  Google Scholar 

  17. J.M. Zhang, L. Liu, X.Y. Zhao, S.W. Lei, Q.P. Dong, ISIJ Int. 54 (2014) 1560–1569.

    Article  Google Scholar 

  18. P.H. Li, Q.J. Wu, W.H. Hu, J.S. Ye, J. Iron Steel Res. Int. 22 (2015) No. S1, 63–67.

    Article  Google Scholar 

  19. D.Q. Geng, J.X. Zheng, K. Wang, P. Wang, R.Q. Liang, H.T. Liu, H. Lei, J.C. He, Metall. Mater. Trans. B 46 (2015) 1484–1493.

    Article  Google Scholar 

  20. J.X. Chen, Common chart and data for steelmaking, 2nd edition, Metallurgical Industry Press, Beijing, 2010.

    Google Scholar 

  21. J.H. Wei, Journal of Shanghai University 7 (2003) 97–117.

    Article  Google Scholar 

  22. Y.S. Chen, Y.D. He, Z.Z. Huang, Journal of Inner Mongolia University of Science and Technology 26 (2007) 1–5.

    Google Scholar 

  23. O. Nakamura, M. Numata, K. Takatani, Tetsu-to-Hagane 101 (2015) 123–128.

    Article  Google Scholar 

  24. T. Kuwabara, K. Umezawa, K. Mori, H. Watanabe, Trans. ISIJ 28 (1988) 305–314.

    Article  Google Scholar 

  25. Y.H. Li, Y.P. Bao, M. Wang, R. Wang, D.C. Tang, Ironmak. Steelmak. 42 (2015) 366–372.

    Article  Google Scholar 

  26. M. Wang, Y.P. Bao, Q. Yang, L.H. Zhao, L. Lin, Int. J. Miner. Metall. Mater. 22 (2015) 1252–1259.

    Article  Google Scholar 

  27. M. Wang, Y.P Bao, L.H Zhao, Q. Yang, L. Lin, ISIJ Int. 55 (2015) 1652–1660.

    Article  Google Scholar 

  28. R. Ding, B. Blanpain, P.T. Jones, P. Wollants, Metall. Mater. Trans. B 31 (2000) 197–206.

    Article  Google Scholar 

  29. F. Jiang, G.G. Cheng, Ironmak. Steelmak. 39 (2012) 386–390.

    Article  Google Scholar 

  30. D.Q. Geng, H. Lei, J.C. He, ISIJ Int. 52 (2012) 1036–1044.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Natural Science Foundation of China (51574063), Fundamental Research Funds for the Central Universities (N150204012, N152306001), and Program for Liaoning Excellent Talents in University (LJQ2015056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-ping Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Dp., Zhang, Yp., Jiang, Zh. et al. Model for Ruhrstahl–Heraeus (RH) decarburization process. J. Iron Steel Res. Int. 25, 409–416 (2018). https://doi.org/10.1007/s42243-018-0053-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0053-z

Keywords

Navigation