Reduction and melting separation mechanism of boron-bearing iron concentrate/coal composite pellet

  • Guang Wang
  • Qing-guo Xue
  • Jing-song Wang
Original Paper


Realizing the boron and iron separation through selective reduction and melting separation of boron-bearing iron concentrate is of great significance for the utilization of crude ludwigite. The reduction and melting separation mechanism of boron-bearing iron concentrate/coal composite pellet was systematically investigated. The reduction and melting separation test of small size pellet was performed to reveal the evolution of slag and iron in the melting separation process. The isothermal reduction experiment showed the relationship between reduction stage and melting separation stage, and the step reduction and melting separation was perfectly achieved. Coal particles existed through the reduction and melting separation process and finally formed brown residue around the separated product. The pellet could not realize melting separation when the B2O3 content in the concentrate was lower than 6.00 wt%.


Boron-bearing iron concentrate Composite pellet Reduction Melting separation Mechanism 



The authors would like to express their gratitude for the financial support of the China Postdoctoral Science Foundation (No. 2016M600919) and National Natural Science Foundation of China (No. 51274033).


  1. [1]
    X.J. Zheng, Borax, Boric Acid and Boric Fertilizer Production Technology, Chemical Industry Press, Beijing, 2013.Google Scholar
  2. [2]
    X.P. Zhang, J.F. Lang, C.M. Cui, S.L. Liu, Iron and Steel 30 (1995) No. 12, 9–11.Google Scholar
  3. [3]
    Z.T. Sui, P.X. Zhang, C. Yamauchi, Acta Mater. 47 (1999) 1337−1344.CrossRefGoogle Scholar
  4. [4]
    S.L. Liu, C.M. Cui, P.X. Zhang, ISIJ Int. 38 (1998) 1077–1079.CrossRefGoogle Scholar
  5. [5]
    Q.J. Zhao, F.M. Meng, Z.B. Ma, Journal of Northeast University of Technology 12 (1991) 464–450.Google Scholar
  6. [6]
    K.H. Bauer, D. Huette, H.J. Lehmkuehler, H. Schmauch, Metall. Plant Technol. 13 (1990) No. 4, 74–87.Google Scholar
  7. [7]
    J.M. McClelland, G.E. Metius, JOM 55 (2003) No. 8, 30–34.CrossRefGoogle Scholar
  8. [8]
    R. Munnix, J. Borlee, D. Steyls, M. Economopoulos, Metall. Plant Technol. 20 (1997) No. 2, 50–52.Google Scholar
  9. [9]
    Y. Sawa, T. Yamamoto, K. Takeda, H. Itaya, ISIJ Int. 41 (2001) S17–S21.CrossRefGoogle Scholar
  10. [10]
    B. Anameric, S.K. Kawatra, Miner. Metall. Proc. 33 (2006) 52–56.Google Scholar
  11. [11]
    G. Wang, J.S. Wang, Y.G. Ding, S. Ma, Q.G. Xue, ISIJ Int. 52 (2012) 45–51.CrossRefGoogle Scholar
  12. [12]
    Y.G. Ding, J.S. Wang, G. Wang, S. Ma, Q.G. Xue, J. Iron Steel Res. Int. 19 (2012) No. 6, 9–13.CrossRefGoogle Scholar
  13. [13]
    G. Wang, Y.G. Ding, J.S. Wang, X.F. She, Q.G. Xue, Int. J. Miner. Metall. Mater. 20 (2013) 522–528.CrossRefGoogle Scholar
  14. [14]
    G. Wang, Q.G. Xue, X.F. She, J.S. Wang, Int. J. Miner. Metall. Mater. 22 (2015) 926–932.CrossRefGoogle Scholar
  15. [15]
    G. Wang, Q.G. Xue, J.S. Wang, Trans. Nonferrous Met. Soc. China 26 (2016) 282–293.CrossRefGoogle Scholar
  16. [16]
    G. Wang, Q.G. Xue, X.F. She,J.G. Wang, ISIJ Int. 55 (2015) 751–757.CrossRefGoogle Scholar
  17. [17]
    G. Wang, Q.G. Xue, J.S. Wang, Ironmak. Steelmak. 43 (2016) 153–162.CrossRefGoogle Scholar
  18. [18]
    G. Wang, Q.G. Xue, J.S. Wang, Thermochim. Acta 621 (2015) 90–98.CrossRefGoogle Scholar
  19. [19]
    H.S. Kim, J.G. Kim, Y. Sasaki, ISIJ Int. 50 (2010) 1099–1106.CrossRefGoogle Scholar
  20. [20]
    G. Wang, J.S. Wang, X.Y. Yu, Y.F. Shen, Q.G. Xue, Int. J. Miner. Metall. Mater. 23 (2016) 247–256.CrossRefGoogle Scholar
  21. [21]
    X.L. Liu, S.L. Wu, W. Huang, K.F. Zhang, K.P. Du, ISIJ Int. 54 (2014) 2089–2096.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations