Advertisement

Journal of Iron and Steel Research International

, Volume 25, Issue 2, pp 243–251 | Cite as

Effects of Nb on microstructure and wear resistance of Fe–Cr–C–B surfacing alloy

  • Jian Gou
  • Zheng-jun Liu
  • Hua Jia
Original Paper
  • 111 Downloads

Abstract

The influence of Nb on the microstructure and wear resistance of the surfacing layer was investigated by using the Fe-based flux-cored wire in the Fe–Cr–C–B system. The microstructure, microhardness and wear resistance properties of the samples were investigated by X-ray diffraction, scanning electron microscopy, microhardness testing and abrasive wear testing, respectively. The results indicate that microstructures of the alloy are composed of martensite, retained austenite, M23(C,B)6 and NbC. Boride M23(C,B)6 is distributed along the grain boundaries, while NbC in shape-regular quadrilateral is distributed in martensite. The microhardness is distributed from the substrate to the surfacing layer gradiently. NbC significantly improved the wear resistance of surfacing layer.

Keywords

Flux-cored wire Surfacing layer Microhardness Microstructure Wear resistance 

Notes

Acknowledgements

This work was financially supported by Doctor Foundation Start-up Project of Liaoning Province (No. 20131079).

References

  1. [1]
    X.H. Gao, Z.M. Guo, Q.F. Geng, P.J. Ma, G. Liu, Sol. Energy Mater. Solar Cells 157 (2016) 543–549.CrossRefGoogle Scholar
  2. [2]
    Z.Z. Fu, R. Koc, Mater. Sci. Eng. A 676 (2016) 278–288.CrossRefGoogle Scholar
  3. [3]
    O.P. Modi, D.P. Mondal, B.K. Prasad, M. Singh, H.K. Khaira, Mater. Sci. Eng. A 343 (2003) 235–242.CrossRefGoogle Scholar
  4. [4]
    A. Gualco, H.G. Svoboda, E.S. Surian, Wear 360–361 (2016) 14–20.CrossRefGoogle Scholar
  5. [5]
    H.Y. Liu, Z.B. Song, Q. Lao, S.P. Chen, Q.S. Meng, J. Alloy. Compd. 23 (2016) 276–280.Google Scholar
  6. [6]
    Q.T. Li, Y.P. Lei, H.G. Fu, Z.W. Wu, J. Lin, J. Alloy. Compd. 23 (2016) 124–129.CrossRefGoogle Scholar
  7. [7]
    S. Yoshioka, L. Boatemaa, S.V.D. Zwaag, J. Eur. Ceram. Soc. 36 (2016) 4155–4162.CrossRefGoogle Scholar
  8. [8]
    Z.R. Li, D.Y. Li, N.N. Zhang, H. Huang, X. Wang, J. Alloy. Compd. 23 (2016) 834–841.Google Scholar
  9. [9]
    Y.H. Liu, J. Li, F.Z. Xuan, Surf. Eng. 28 (2013) 560–563.CrossRefGoogle Scholar
  10. [10]
    A. Surzhenkov, M. Antonov, D. Goljandin, P. Kulu, M. Viljus, R. Traksmaa, Surf. Eng. 32 (2016) 624–630.CrossRefGoogle Scholar
  11. [11]
    A. Singh, N.B. Dahotre, J. Mater. Sci. 39 (2004) 4553–4560.CrossRefGoogle Scholar
  12. [12]
    T. Sun, R.B. Song, X. Wang, P. Deng, C.J. Wu, J. Alloy. Compd. 22 (2015) 84–90.Google Scholar
  13. [13]
    A.P. Modi, Tribol. Int. 40 (2007) 490–497.CrossRefGoogle Scholar
  14. [14]
    Y. Jian, Z. Huang, J. Xing, X. Liu, L. Sun, B. Zheng, Wear 362–363 (2016) 68–77.CrossRefGoogle Scholar
  15. [15]
    J.A. Cabral Miramontes, J.D.O. Barceinas Sánchez, F. Almeraya Calderón, A. Martínez Villafañe, J.G. Chacón Nava, J. Mater. Eng. Perform. 19 (2010) 880–884.CrossRefGoogle Scholar
  16. [16]
    S.G. Huang, J. Vleugels, H. Mohrbacher, M. Woydt, Metal Powder Rep. 71 (2016) No.5, 349–355.CrossRefGoogle Scholar
  17. [17]
    J.H. Kim, K.H. Ko, S.D. Noh, G.G. Kim, S.J. Kim, Wear 267 (2008) 1415–1419.CrossRefGoogle Scholar
  18. [18]
    Y. Yang, J.T. Busby, J. Nucl. Mater. 448 (2014) 282–293.CrossRefGoogle Scholar
  19. [19]
    L. Zong, Z.J. Liu, Adv. Mater. Res. 189–193 (2011) 518–522.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.Department of Material Science and EngineeringShenyang University of TechnologyShenyangChina

Personalised recommendations