Skip to main content

Advertisement

Log in

Effect of bainite microstructure during two-step quenching and partitioning process on strength and toughness properties of a 0.3%C bainitic steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of bainite transformation and microstructure on the mechanical properties in 0.3%C bainitic steel was investigated via the heat treatment process of quenching at higher initial temperature and partitioning below martensite-start temperature. The results show that bainite transformation takes place with the partitioning time increasing during partitioning below martensite-start temperature. The microstructure of samples treated by this two-step quenching and partitioning process consists of lath bainite, lath martensite and retained austenite. This kind of multiphase microstructure exhibits better strength of 1420 MPa, ductility of 21.8% and the product of strength and elongation of 30.8 GPa%. Furthermore, the excellent impact toughness of 103 J is exhibited by partitioning at 280 °C for 3 h. In addition, the coalescence of bainite platelets was found in the sample treated by partitioning for 8 h, leading to the deterioration of toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611–2622.

    Article  Google Scholar 

  2. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, Mater. Sci. Eng. A 438 (2006) 25–34.

    Article  Google Scholar 

  3. H.K.D.H. Bhadeshia, R.W.K. Honeycombe, Steels: Microstructure and Properties, third edition, Butterworth-Heinemann, Oxford, 2006.

    Google Scholar 

  4. M.C. Somani, D.A. Porter, L.P. Karjalainen, R.D.K. Misra, Metall. Mater. Trans. A 45 (2014) 1247–1257.

    Article  Google Scholar 

  5. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, Acta Mater. 56 (2008) 16–22.

    Article  Google Scholar 

  6. F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, M.J. Santofimia, Acta Mater. 104 (2016) 72–83.

    Article  Google Scholar 

  7. G.H. Gao, H. Zhang, X.L. Gui, P. Luo, Z.L. Tan, B.Z. Bai, Acta Mater. 76 (2014) 425–433.

    Article  Google Scholar 

  8. H.Y. Li, X.W. Lu, X.C. Wu, Y.A. Min, X.J. Jin, Mater. Sci. Eng. A 527 (2010) 6255–6259.

    Article  Google Scholar 

  9. Q. Li, X. Huang, W. Huang, Mater. Sci. Eng. A 662 (2016) 129–135.

    Article  Google Scholar 

  10. T.S. Wang, X.Y. Li, F.C. Zhang, Y.Z. Zheng, Mater. Sci. Eng. A 438-440 (2006) 1124–1127.

    Article  Google Scholar 

  11. M. Soliman, H. Mostafa, A.S. El-Sabbagh, H. Palkowski, Mater. Sci. Eng. A 527 (2010) 7706–7713.

    Article  Google Scholar 

  12. X.Y. Long, F.C. Zhang, J. Kang, B. Lv, X.B. Shi, Mater. Sci. Eng. A 594 (2014) 344–351.

    Article  Google Scholar 

  13. L.J. Zhao, L.H. Qian, J.Y. Meng, Q. Zhou, F.C. Zhang, Scripta Mater. 112 (2016) 96–100.

    Article  Google Scholar 

  14. J.G. Speer, F.C.R. Assunção, D.K. Matlock, D.V. Edmonds, Mater. Res. 8 (2005) 417–423.

    Article  Google Scholar 

  15. G.H. Gao, H. Zhang, Z.L. Tan, W.B. Liu, B.Z. Bai, Mater. Sci. Eng. A 559 (2013) 165–169.

    Article  Google Scholar 

  16. M.J. Santofimia, S.M.C. van Bohemen, D.N. Hanlon, L. Zhao, J. Sietsma, in: International Symposium on New Developments in Advanced High-Strength Sheet Steels, At Vail, Colorado, USA, 2013, pp. 331–339.

    Google Scholar 

  17. H.K.D.H. Bhadeshia, E. Keehan, L. Karlssonz, H.O. Andrén, Trans. Indian Inst. Met. 59 (2006) 689–694.

    Google Scholar 

  18. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, Scripta Mater. 68 (2013) 321–324.

    Article  Google Scholar 

  19. K. Zhang, M.H. Zhang, Z.H. Guo, N.L. Chen, Y.H. Rong, Mater. Sci. Eng. A 528 (2011) 8486–8491.

    Article  Google Scholar 

  20. E. Keehan, L. Karlsson, H.K.D.H. Bhadeshia, M. Thuvander, Mater. Sci. Technol. 24 (2008) 1183–1188.

    Article  Google Scholar 

  21. Y. Tomita, K. Okabayashi, Metall. Trans. A 14 (1983) 485–492.

    Article  Google Scholar 

  22. Y. Li, T.N. Baker, Mater. Sci. Technol. 26 (2010) 1029–1040.

    Article  Google Scholar 

  23. G. Lacroix, T. Pardoen, P.J. Jacques, Acta Mater. 56 (2008) 3900–3913.

    Article  Google Scholar 

  24. F.G. Caballero, J. Chao, J. Cornide, C. García-Mateo, M.J. Santofimia, C. Capdevila, Mater. Sci. Eng. A 525 (2009) 87–95.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Science & Technology Department of Sichuan Province, China (No. 2014GZ0087) and the Scientific Research Foundation for Young Teachers of Sichuan University (No. 2014SCU11019). The authors also express their great gratitude to Mr. Xiong-fei Yang from Pangang Group Research Institute Co., Ltd. for the kind help of TEM experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-gang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Ch., Li, Qg., Huang, Xf. et al. Effect of bainite microstructure during two-step quenching and partitioning process on strength and toughness properties of a 0.3%C bainitic steel. J. Iron Steel Res. Int. 25, 235–242 (2018). https://doi.org/10.1007/s42243-018-0032-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0032-4

Keywords

Navigation