Advertisement

Journal of Iron and Steel Research International

, Volume 25, Issue 2, pp 235–242 | Cite as

Effect of bainite microstructure during two-step quenching and partitioning process on strength and toughness properties of a 0.3%C bainitic steel

  • Cheng-hui Su
  • Qiang-guo Li
  • Xue-fei Huang
  • Wei-gang Huang
Original Paper
  • 156 Downloads

Abstract

The effect of bainite transformation and microstructure on the mechanical properties in 0.3%C bainitic steel was investigated via the heat treatment process of quenching at higher initial temperature and partitioning below martensite-start temperature. The results show that bainite transformation takes place with the partitioning time increasing during partitioning below martensite-start temperature. The microstructure of samples treated by this two-step quenching and partitioning process consists of lath bainite, lath martensite and retained austenite. This kind of multiphase microstructure exhibits better strength of 1420 MPa, ductility of 21.8% and the product of strength and elongation of 30.8 GPa%. Furthermore, the excellent impact toughness of 103 J is exhibited by partitioning at 280 °C for 3 h. In addition, the coalescence of bainite platelets was found in the sample treated by partitioning for 8 h, leading to the deterioration of toughness.

Keywords

Quenching and partitioning Bainitic steel Impact toughness Coalesced bainite 

Notes

Acknowledgements

This research was supported by the Science & Technology Department of Sichuan Province, China (No. 2014GZ0087) and the Scientific Research Foundation for Young Teachers of Sichuan University (No. 2014SCU11019). The authors also express their great gratitude to Mr. Xiong-fei Yang from Pangang Group Research Institute Co., Ltd. for the kind help of TEM experiment.

References

  1. [1]
    J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611–2622.CrossRefGoogle Scholar
  2. [2]
    D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, Mater. Sci. Eng. A 438 (2006) 25–34.CrossRefGoogle Scholar
  3. [3]
    H.K.D.H. Bhadeshia, R.W.K. Honeycombe, Steels: Microstructure and Properties, third edition, Butterworth-Heinemann, Oxford, 2006.Google Scholar
  4. [4]
    M.C. Somani, D.A. Porter, L.P. Karjalainen, R.D.K. Misra, Metall. Mater. Trans. A 45 (2014) 1247–1257.CrossRefGoogle Scholar
  5. [5]
    A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, Acta Mater. 56 (2008) 16–22.CrossRefGoogle Scholar
  6. [6]
    F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, M.J. Santofimia, Acta Mater. 104 (2016) 72–83.CrossRefGoogle Scholar
  7. [7]
    G.H. Gao, H. Zhang, X.L. Gui, P. Luo, Z.L. Tan, B.Z. Bai, Acta Mater. 76 (2014) 425–433.CrossRefGoogle Scholar
  8. [8]
    H.Y. Li, X.W. Lu, X.C. Wu, Y.A. Min, X.J. Jin, Mater. Sci. Eng. A 527 (2010) 6255–6259.CrossRefGoogle Scholar
  9. [9]
    Q. Li, X. Huang, W. Huang, Mater. Sci. Eng. A 662 (2016) 129–135.CrossRefGoogle Scholar
  10. [10]
    T.S. Wang, X.Y. Li, F.C. Zhang, Y.Z. Zheng, Mater. Sci. Eng. A 438-440 (2006) 1124–1127.CrossRefGoogle Scholar
  11. [11]
    M. Soliman, H. Mostafa, A.S. El-Sabbagh, H. Palkowski, Mater. Sci. Eng. A 527 (2010) 7706–7713.CrossRefGoogle Scholar
  12. [12]
    X.Y. Long, F.C. Zhang, J. Kang, B. Lv, X.B. Shi, Mater. Sci. Eng. A 594 (2014) 344–351.CrossRefGoogle Scholar
  13. [13]
    L.J. Zhao, L.H. Qian, J.Y. Meng, Q. Zhou, F.C. Zhang, Scripta Mater. 112 (2016) 96–100.CrossRefGoogle Scholar
  14. [14]
    J.G. Speer, F.C.R. Assunção, D.K. Matlock, D.V. Edmonds, Mater. Res. 8 (2005) 417–423.CrossRefGoogle Scholar
  15. [15]
    G.H. Gao, H. Zhang, Z.L. Tan, W.B. Liu, B.Z. Bai, Mater. Sci. Eng. A 559 (2013) 165–169.CrossRefGoogle Scholar
  16. [16]
    M.J. Santofimia, S.M.C. van Bohemen, D.N. Hanlon, L. Zhao, J. Sietsma, in: International Symposium on New Developments in Advanced High-Strength Sheet Steels, At Vail, Colorado, USA, 2013, pp. 331–339.Google Scholar
  17. [17]
    H.K.D.H. Bhadeshia, E. Keehan, L. Karlssonz, H.O. Andrén, Trans. Indian Inst. Met. 59 (2006) 689–694.Google Scholar
  18. [18]
    X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, Scripta Mater. 68 (2013) 321–324.CrossRefGoogle Scholar
  19. [19]
    K. Zhang, M.H. Zhang, Z.H. Guo, N.L. Chen, Y.H. Rong, Mater. Sci. Eng. A 528 (2011) 8486–8491.CrossRefGoogle Scholar
  20. [20]
    E. Keehan, L. Karlsson, H.K.D.H. Bhadeshia, M. Thuvander, Mater. Sci. Technol. 24 (2008) 1183–1188.CrossRefGoogle Scholar
  21. [21]
    Y. Tomita, K. Okabayashi, Metall. Trans. A 14 (1983) 485–492.CrossRefGoogle Scholar
  22. [22]
    Y. Li, T.N. Baker, Mater. Sci. Technol. 26 (2010) 1029–1040.CrossRefGoogle Scholar
  23. [23]
    G. Lacroix, T. Pardoen, P.J. Jacques, Acta Mater. 56 (2008) 3900–3913.CrossRefGoogle Scholar
  24. [24]
    F.G. Caballero, J. Chao, J. Cornide, C. García-Mateo, M.J. Santofimia, C. Capdevila, Mater. Sci. Eng. A 525 (2009) 87–95.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Cheng-hui Su
    • 1
  • Qiang-guo Li
    • 1
  • Xue-fei Huang
    • 1
  • Wei-gang Huang
    • 1
  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations