Skip to main content
Log in

Helium ions irradiation-induced surface damage in Fe-based melt-spun ribbons

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The Fe78Si8B14 and Fe78P8B14 ribbons with different wheel speeds were prepared by melt-spinning, and their responses to He+ ion irradiation were investigated. Previous studies had shown that the ion beam resistance capability of amorphous ribbons was better than their corresponding crystalline counterparts. However, no significant changes on the surface at low fluence are observed. At a relatively higher fluence, both the ribbons prepared at low and high wheel speeds behave the similar irradiation responses: peeling, flaking and multi-layer damages occur. The fully amorphous ribbons prepared at a high wheel speed can accommodate partial incident ions owing to the inherent disordered structure. As the irradiation fluence increases, they fail to accommodate the excess incident ions, which easily aggregate to result in the surface damage. While the partial amorphous ribbons prepared at a low wheel speed possess lots of unstable crystalline grain boundaries owing to the precipitation of Si- or P-rich phase, which may act as the source for the irradiation-induced defects annihilation. Results show that the size and the fraction of precipitate phases in amorphous matrix may play a dominated role in resisting the ion irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.L. Greer, E. Ma, MRS Bull. 32 (2011) 611–619.

    Article  Google Scholar 

  2. M.D. Demetriou, W.L. Johnson, K. Samwer, J. Alloy. Compd. 483 (2009) 644–650.

    Article  Google Scholar 

  3. W.H. Wang, R.J. Wang, F.Y. Li, D.Q. Zhao, M.X. Pan, Appl. Phys. Lett. 74 (1999) 1803–1805.

    Article  Google Scholar 

  4. S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer, Nature 524 (2015) 200–203.

    Article  Google Scholar 

  5. J. Schroers, Adv. Mater. 22 (2010) 1566–1597.

    Article  Google Scholar 

  6. K. Zhang, Z. Hu, F. Li, B. Wei, Appl. Surf. Sci. 390 (2016) 941–945.

    Article  Google Scholar 

  7. N. Nita, R. Schaeublin, M. Victoria, J. Nucl. Mater. 329-333 (2004) 953–957.

    Article  Google Scholar 

  8. Y. Chimi, A. Iwase, N. Ishikawa, J. Nucl. Mater. 297 (2001) 355–357.

    Article  Google Scholar 

  9. M. Rose, A.G. Balogh, H. Hahn, Nucl. Instrum. Methods Phys. Res. Section B 127 (1997) 119–122.

  10. X.M. Bai, A.F. Voter, R.G. Hoagland, Science 327 (2010) 1631–1634.

    Article  Google Scholar 

  11. G. Ackland, Science 327 (2010) 1587–1588.

    Article  Google Scholar 

  12. G.A. Kachurin, M.O. Ruault, A.K. Gutakovsky, Nucl. Instrum. Methods Phys. Res. Section B 147 (1998) 356–360.

  13. M.C. Ridgway, G.D.M. Azevedo, R.G. Elliman, C.J. Glover, D.J. Llewellyn, R. Miller, W. Wesch, G.J. Foran, J. Hansen, A. Nylandsted-Larsen, Phys. Rev. B 71 (2004) 094107.

    Article  Google Scholar 

  14. A. Meldrum, L.A. Boatner, R.C. Ewing, Phys. Rev. Lett. 88 (2002) 025503.

    Article  Google Scholar 

  15. Á. Révész, A. Concustell, L.K. Varga, S. Suriñach, M.D. Baró, Mater. Sci. Eng. A 375-377 (2004) 776–780.

    Article  Google Scholar 

  16. L. Yang, X.T. Zu, Z.G. Wang, F. Gao, X.Y. Wang, H.L. Heinisch, R.J. Kurtz, Nucl. Instrum. Methods Phys. Res. Section B 265 (2007) 541–546.

  17. K. Arakawa, R. Imamura, K. Ohota, K. Ono, J. Appl. Phys. 89 (2001) 4752–4757.

    Article  Google Scholar 

  18. K. Morishita, R. Sugano, B.D. Wirth, T. Diaz de la Rubia, Nucl. Instrum. Methods Phys. Res. Section B 202 (2003) 76–81.

  19. K.Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E.G. Fu, X. Zhang, J. Nucl. Mater. 425 (2012) 140–146.

    Article  Google Scholar 

  20. K. Nagashio, K. Kuribayashi, Acta Mater. 54 (2006) 2353–2360.

    Article  Google Scholar 

  21. W. Hou, X. Mei, Z. Wang, Y. Wang, Nucl. Instrum. Methods Phys. Res. Section B 342 (2015) 221–227.

  22. T.H. Woo, H.S. Cho, Nucl. Instrum. Methods Phys. Res. Section A 652 (2011) 69–72.

Download references

Acknowledgements

The authors would like to acknowledge the support by the National Natural Science Foundation of China (Grant Nos. 51401028, 51271193, 11402277) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB22040303). The authors also thank to the support of Opening Fund of State Key Lab of Nuclear Physics and Technology at Peking University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Zhang or Bing-chen Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Yh., Zhang, K., Zhao, Zq. et al. Helium ions irradiation-induced surface damage in Fe-based melt-spun ribbons. J. Iron Steel Res. Int. 25, 268–274 (2018). https://doi.org/10.1007/s42243-018-0029-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0029-z

Keywords

Navigation