Helium ions irradiation-induced surface damage in Fe-based melt-spun ribbons

Original Paper
  • 4 Downloads

Abstract

The Fe78Si8B14 and Fe78P8B14 ribbons with different wheel speeds were prepared by melt-spinning, and their responses to He+ ion irradiation were investigated. Previous studies had shown that the ion beam resistance capability of amorphous ribbons was better than their corresponding crystalline counterparts. However, no significant changes on the surface at low fluence are observed. At a relatively higher fluence, both the ribbons prepared at low and high wheel speeds behave the similar irradiation responses: peeling, flaking and multi-layer damages occur. The fully amorphous ribbons prepared at a high wheel speed can accommodate partial incident ions owing to the inherent disordered structure. As the irradiation fluence increases, they fail to accommodate the excess incident ions, which easily aggregate to result in the surface damage. While the partial amorphous ribbons prepared at a low wheel speed possess lots of unstable crystalline grain boundaries owing to the precipitation of Si- or P-rich phase, which may act as the source for the irradiation-induced defects annihilation. Results show that the size and the fraction of precipitate phases in amorphous matrix may play a dominated role in resisting the ion irradiation.

Keywords

Melt-spinning Ion irradiation Fe-based melt-spun ribbon Damage Precipitate phase 

Notes

Acknowledgements

The authors would like to acknowledge the support by the National Natural Science Foundation of China (Grant Nos. 51401028, 51271193, 11402277) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB22040303). The authors also thank to the support of Opening Fund of State Key Lab of Nuclear Physics and Technology at Peking University.

References

  1. [1]
    A.L. Greer, E. Ma, MRS Bull. 32 (2011) 611–619.CrossRefGoogle Scholar
  2. [2]
    M.D. Demetriou, W.L. Johnson, K. Samwer, J. Alloy. Compd. 483 (2009) 644–650.CrossRefGoogle Scholar
  3. [3]
    W.H. Wang, R.J. Wang, F.Y. Li, D.Q. Zhao, M.X. Pan, Appl. Phys. Lett. 74 (1999) 1803–1805.CrossRefGoogle Scholar
  4. [4]
    S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer, Nature 524 (2015) 200–203.CrossRefGoogle Scholar
  5. [5]
    J. Schroers, Adv. Mater. 22 (2010) 1566–1597.CrossRefGoogle Scholar
  6. [6]
    K. Zhang, Z. Hu, F. Li, B. Wei, Appl. Surf. Sci. 390 (2016) 941–945.CrossRefGoogle Scholar
  7. [7]
    N. Nita, R. Schaeublin, M. Victoria, J. Nucl. Mater. 329-333 (2004) 953–957.CrossRefGoogle Scholar
  8. [8]
    Y. Chimi, A. Iwase, N. Ishikawa, J. Nucl. Mater. 297 (2001) 355–357.CrossRefGoogle Scholar
  9. [9]
    M. Rose, A.G. Balogh, H. Hahn, Nucl. Instrum. Methods Phys. Res. Section B 127 (1997) 119–122.Google Scholar
  10. [10]
    X.M. Bai, A.F. Voter, R.G. Hoagland, Science 327 (2010) 1631–1634.CrossRefGoogle Scholar
  11. [11]
    G. Ackland, Science 327 (2010) 1587–1588.CrossRefGoogle Scholar
  12. [12]
    G.A. Kachurin, M.O. Ruault, A.K. Gutakovsky, Nucl. Instrum. Methods Phys. Res. Section B 147 (1998) 356–360.Google Scholar
  13. [13]
    M.C. Ridgway, G.D.M. Azevedo, R.G. Elliman, C.J. Glover, D.J. Llewellyn, R. Miller, W. Wesch, G.J. Foran, J. Hansen, A. Nylandsted-Larsen, Phys. Rev. B 71 (2004) 094107.CrossRefGoogle Scholar
  14. [14]
    A. Meldrum, L.A. Boatner, R.C. Ewing, Phys. Rev. Lett. 88 (2002) 025503.CrossRefGoogle Scholar
  15. [15]
    Á. Révész, A. Concustell, L.K. Varga, S. Suriñach, M.D. Baró, Mater. Sci. Eng. A 375-377 (2004) 776–780.CrossRefGoogle Scholar
  16. [16]
    L. Yang, X.T. Zu, Z.G. Wang, F. Gao, X.Y. Wang, H.L. Heinisch, R.J. Kurtz, Nucl. Instrum. Methods Phys. Res. Section B 265 (2007) 541–546.Google Scholar
  17. [17]
    K. Arakawa, R. Imamura, K. Ohota, K. Ono, J. Appl. Phys. 89 (2001) 4752–4757.CrossRefGoogle Scholar
  18. [18]
    K. Morishita, R. Sugano, B.D. Wirth, T. Diaz de la Rubia, Nucl. Instrum. Methods Phys. Res. Section B 202 (2003) 76–81.Google Scholar
  19. [19]
    K.Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E.G. Fu, X. Zhang, J. Nucl. Mater. 425 (2012) 140–146.CrossRefGoogle Scholar
  20. [20]
    K. Nagashio, K. Kuribayashi, Acta Mater. 54 (2006) 2353–2360.CrossRefGoogle Scholar
  21. [21]
    W. Hou, X. Mei, Z. Wang, Y. Wang, Nucl. Instrum. Methods Phys. Res. Section B 342 (2015) 221–227.Google Scholar
  22. [22]
    T.H. Woo, H.S. Cho, Nucl. Instrum. Methods Phys. Res. Section A 652 (2011) 69–72.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.Key Laboratory of Microgravity (National Microgravity Laboratory)Institute of Mechanics, Chinese Academy of SciencesBeijingChina
  2. 2.School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.School of PhysicsPeking UniversityBeijingChina

Personalised recommendations