Mechanical property statistical analysis of Gd50Al30Co20 amorphous wires for providing reference to design requirements of cooling system

  • Bin Luo
  • Hong-xian Shen
  • Lin Lin
  • Hai-chao Li
  • Da-wei Xing
  • Jian-fei Sun
Original Paper


Gd50Al30Co20 wires show excellent magnetocaloric properties and high heat exchange rate due to the microsize. The Weibull and lognormal methods were used for systematically analyzing its mechanical properties for matching the design requirements in cooling system. The wire exhibits average fracture strength of ~ 969.5 MPa and typical fracture behavior of amorphous character. Moreover, the distributions of stresses for tensile strains at 10 values are estimated by probability plot and Chi-square goodness-of-fit test. The random stresses were best fitted by lognormal probability distribution for most studied cases; however, fracture strength was best fitted by Weibull probability distribution. It is interesting to note that the mean and standard deviation of the stresses (to reach specific tensile strain) increase as the tensile strain grows, accompanied by the coefficients of variation of stresses which decrease smoothly. It is concluded that the inhomogeneity of material does cause the scatter of stresses growth, and the scatter could be considerably large.


Gd50Al30Co20 amorphous wire Tensile property Statistical analysis Variation coefficient 



The authors are thankful for the supports from the Key National Natural Science Foundation of China (No. U1533202), the Shandong Independent Innovation and Achievements Transformation Fund (No. 2014CGZH1101), the Civil Aviation Administration of China (No. MHRD20150104), National Science-technology Support Plan Project “the application paradigm of full lifecycle information closed-loop management for construction machinery” (No. 2015BAF32B01-4) and National Natural Science Foundation of China (Nos. 51775132, 51671071 and 51371067).


  1. [1]
    W.H. Wang, Adv. Mater. 21 (2009) 4524–4544.CrossRefGoogle Scholar
  2. [2]
    B.Z. Tang, P. Yu, D. Ding, C. Wu, L. Xia, J. Magn. Magn. Mater. 424 (2017) 275–278.CrossRefGoogle Scholar
  3. [3]
    M.D. Kuz’min, Appl. Phys. Lett. 90 (2007) 251916.Google Scholar
  4. [4]
    D. Vuarnoz, T. Kawanami, Appl. Therm. Eng. 37 (2012) 388–395.CrossRefGoogle Scholar
  5. [5]
    B. Schwarz, B. Podmilsak, N. Mattern, J. Eckert, J. Magn. Magn. Mater. 322 (2010) 2298–2303.CrossRefGoogle Scholar
  6. [6]
    J. Du, Q. Zheng, Y.B. Li, Q. Zhang, J. Appl. Phys. 103 (2008) 023918.CrossRefGoogle Scholar
  7. [7]
    Y. Bao, D.Y. Yang, N. Liu, G.Q. Zhang, Z. Li, F.Y. Cao, J.F. Sun, J. Iron Steel Res. Int. 24 (2017) 435–441.CrossRefGoogle Scholar
  8. [8]
    J.F. Zhao, S.G.X.G. Yuan, J.F. Sun, H.J. Huang, F.Y. Cao, H.X. Shen, Y.L. Wang, J. Iron Steel Res. Int. 24 (2017) 469–474.CrossRefGoogle Scholar
  9. [9]
    Y.J. Huang, P. Xue, X. Cheng, Y.M. Wang, F.Y. Cao, Z.L. Ning, J.F. Sun, J. Iron Steel Res. Int. 24 (2017) 416–420.CrossRefGoogle Scholar
  10. [10]
    H. Shen, H. Wang, L. Jingshun, F. Cao, F. Qin, D. Xing, D. Chen, Y. Liu, J. Sun, J. Magn. Magn. Mater. 372 (2014) 23–26.CrossRefGoogle Scholar
  11. [11]
    H. Wang, D. Xing, X. Wang, J. Sun, Metall. Mater. Trans. A 42 (2010) 1103–1108.CrossRefGoogle Scholar
  12. [12]
    J. Liu, F. Qin, D. Chen, H. Shen, H. Wang, D. Xing, M.H. Phan, J. Sun, J. Appl. Phys. 115 (2014) 17A326.CrossRefGoogle Scholar
  13. [13]
    D. Xing, H. Shen, S. Jiang, J. Liu, M.H. Phan, H. Wang, F. Qin, D. Chen, Y. Liu, J. Sun, Phys Status Solidi A 212 (2015) 1905–1910.CrossRefGoogle Scholar
  14. [14]
    H. Shen, H. Wang, J. Liu, D. Xing, F. Qin, F. Cao, D. Chen, Y. Liu, J. Sun, J. Alloy. Compd. 603 (2014) 167–171.CrossRefGoogle Scholar
  15. [15]
    H.X. Shen, D.W. Xing, H. Wang, J.S. Liu, D.M. Chen, Y.F. Liu, J.F. Sun, Mater. Res. 18 (2015) 66–71.CrossRefGoogle Scholar
  16. [16]
    H.X. Shen, D.W. Xing, J.L. Sánchez Llamazares, C.F. Sánchez-Valdés, H. Belliveau, H. Wang, F.X. Qin, Y.F. Liu, J.F. Sun, H. Srikanth, M.H. Phan, Appl. Phys. Lett. 108 (2016) 092403.CrossRefGoogle Scholar
  17. [17]
    W.N. Sharpe, J. Pulskamp, D.S. Gianola, C. Eberl, R.G. Polcawich, R.J. Thompson, Exp. Mech. 47 (2007) 649–658.CrossRefGoogle Scholar
  18. [18]
    W. Weibull, J. Appl. Mech. 18 (1951) 293–297.Google Scholar
  19. [19]
    Z. Han, L.C. Tang, J. Xu, Y. Li, Scripta Mater 61 (2009) 923–926.CrossRefGoogle Scholar
  20. [20]
    J. Schijve, Fatigue Fract. Eng. Mater. Struct. 17 (1994) 381–396.CrossRefGoogle Scholar
  21. [21]
    J. Dominguez, J. Zapatero, J. Pascual, Eng. Fract. Mech. 56 (1997) 65–76.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations