Skip to main content
Log in

Effects of different types of twinning on microstructure and mechanical properties of a strongly textured TA2 commercially pure titanium alloy subjected to rolling at ambient and cryogenic temperatures

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Strongly textured commercially pure titanium alloy TA2 plates with different initial textures have been rolled at cryogenic and ambient temperatures to 4% reduction and then post-annealed at 50 °C for 12 h. Microstructures of the samples were investigated using electron backscatter diffraction. The mechanical property of the sheets was tested via quasi-static uniaxial tensile tests along the rolling direction at room temperature. The effects of initial texture and rolling temperature on twin activity and mechanical property have been investigated. Twinning is very active in TA2 titanium during rolling at either room or cryogenic temperature. \(\{ 11\overline{2} 2\}\) contraction twins can be observed in all the sheets and are the dominant twin mode for the sheets with an initial texture having c-axes parallel to the normal direction (ND). Extension twins have rarely been seen in sheets having an initial texture with c-axes parallel to ND, but play quite an important role in the sheets having an initial texture with c-axes perpendicular to ND. The initial texture of the sheet is considered to determine the twin mode while the cryogenic rolling temperature is found to increase the numbers of twins. Post-annealing does not change obviously the rolled microstructure. After annealing, the strength decreases and elongation to fracture slightly increases. The cryorolled sample has the better strength with little loss in elongation, and this mechanical enhancement is attributed to massive twinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.B. Chun, S.H. Yu, S.L. Semiatin, S.K. Hwang, Mater. Sci. Eng. A 398 (2005) 209–219.

    Article  Google Scholar 

  2. D.K. Yang, P. Cizek, P.D. Hodgson, C.E. Wen, Acta Mater. 58 (2010) 4536–4548.

    Article  Google Scholar 

  3. S.G. Song, G.T. III Gray, Acta Metall. Mater. 43 (1995) 2339–2350.

    Article  Google Scholar 

  4. S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev, S.L. Semiatin, Acta Mater. 61 (2013) 1167–1178.

    Article  Google Scholar 

  5. F. Xu, X. Zhang, H. Ni, Y. Cheng, Y. Zhu, Q. Liu, Mater. Sci. Eng. A 564 (2013) 22–33.

    Article  Google Scholar 

  6. M.H. Yoo, J.K. Lee, Phil. Mag. A 63 (1991) 987–1000.

    Article  Google Scholar 

  7. Q. Liu, Acta Metall. Sin. 46 (2010) 1458–1472.

    Article  Google Scholar 

  8. D. Guo, Z. Zhang, G. Zhang, M. Li, Y. Shi, T. Ma, X. Zhang, Mater. Sci. Eng. A 591 (2014) 167–172.

    Article  Google Scholar 

  9. D.K. Yang, P.D. Hodgson, C.E. Wen, Acta Mater. 63 (2010) 941–944.

    Google Scholar 

  10. D.K. Yang, P. Cizek, D. Fabijanic, B.S. Li, P.D. Hodgson, Acta Mater. 61 (2013) 2840–2852.

    Article  Google Scholar 

  11. A. Salem, S.R. Kalidindi, R.D. Doherty, Acta Mater. 514 (2003) 4225–4237.

    Article  Google Scholar 

  12. Q.Y. Sun, H.C. Gu, Mater. Sci. Eng. A 316 (2001) 80–86.

    Article  Google Scholar 

  13. H. Conrad, Cryogenic 24 (1984) 293–304.

    Article  Google Scholar 

  14. S. Sandlobes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, Acta Mater. 59 (2011) 429–439.

    Article  Google Scholar 

  15. J.W. Qiao, A.C. Sun, E.W. Huang, Y. Zhang, P.K. Liaw, C.P. Chuang, Acta Mater. 59 (2011) 4126–4137.

    Article  Google Scholar 

  16. H.P. Ng, P. Nandwana, A. Devaraj, M. Semblanet, S. Nag, P.N.H. Nakashima, S. Maher, C.J. Bettles, M.A. Gibson, H.L. Fraser, B.C. Muddle, R. Banerjee, Acta Mater. 84 (2015) 457–471.

    Article  Google Scholar 

  17. F. Xu, X. Zhang, H. Ni, Q. Liu, Mater. Sci. Eng. A 541 (2012) 190–195.

    Article  Google Scholar 

  18. X.G. Deng, S.X. Hui, W.J. Ye, X.Y. Song, Mater. Sci. Eng. A 575 (2013) 15–20.

    Article  Google Scholar 

  19. S.G. Song, G.T. III Gray, Metall. Mater. Trans. A 26 (1995) 2665–2675.

    Article  Google Scholar 

  20. H. Qin, J.J. Jonas, H. Yu, N. Brodusch, R. Gauvin, X. Zhang, Acta Mater. 71 (2014) 293–305.

    Article  Google Scholar 

  21. H. Qin, J.J. Jonas, Acta Mater. 75 (2014) 198–211.

    Article  Google Scholar 

  22. J.R. Luo, X. Song, J.S. Zhang, L.Z. Zhuang, J. Iron Steel Res. Int. 23 (2016) 74–77.

    Article  Google Scholar 

  23. J.W. Qiao, T. Zhang, F.Q. Yang, P.K. Liaw, S. Pauly, B.S. Xu, Sci. Rep. 3 (2013) 1–6.

    Article  Google Scholar 

  24. S. Mu, J.J. Jonas, G. Gottstein, Acta Mater. 60 (2012) 2043–2053.

    Article  Google Scholar 

  25. G. Lutjering, J.C. Williams, Titanium, 2nd Edition, Metallurgical Industry Press, Beijing, 2011.

    Google Scholar 

  26. A. Akhtar, Metall. Trans. A 6 (1975) 1105–1113.

    Article  Google Scholar 

  27. M.R. Barnett, Mater. Sci. Eng. A 464 (2007) 1–7.

    Article  Google Scholar 

  28. M.R. Barnett, Mater. Sci. Eng. A 464 (2007) 8–12.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51401019, 51401190, 11405150). The authors are grateful to Dr. Adrien Chapuis in Chongqing University for editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-ru Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Jr., Song, X. & Wang, My. Effects of different types of twinning on microstructure and mechanical properties of a strongly textured TA2 commercially pure titanium alloy subjected to rolling at ambient and cryogenic temperatures. J. Iron Steel Res. Int. 25, 275–281 (2018). https://doi.org/10.1007/s42243-018-0026-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0026-2

Keywords

Navigation