Determination method of high-temperature characteristics of iron-ore sintering based on n(Fe2O3)/n(CaO)


The high-temperature characteristics of iron ores play important roles in optimizing ore proportion of sintering, which are tested by using iron-ore fines and analytical reagent CaO as raw materials. Two calculation methods of CaO addition amount based on binary basicity (basicity method) and n(Fe2O3)/n(CaO) (mole ratio method), respectively, were employed to evaluate the liquid phase fluidity (LPF) and the capability of calcium ferrite formation (CCFF) of iron ores. The results show that the rule of LPF of iron ores under the mole ratio method is different from that with basicity method. The LPF measured by basicity method has a linear positive correlation with the SiO2 content, and there is no linear relationship between LPF and Al2O3 content or mass loss on ignition, which are inconsistent with the results of the previous study. And the results of CCFF with low SiO2 content (< 3 wt.%) or high SiO2 content (> 7 wt.%) based on basicity method cannot reflect the true CCFF. The mole ratio method could successfully solve this problem by reducing the effect of CaO addition amount changes caused by SiO2 content of iron ores.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. [1]

    B.X. Su, J.L. Zhang, J. Chang, G.W. Wang, C.L. Wang, X.M. Che, Iron and Steel 46 (2011) No. 9, 22–28.

    Google Scholar 

  2. [2]

    W. Wang, M. Deng, R.S. Xu, W.B. Xu, Z.L. Ouyang, X.B. Huang, Z.L. Xue, J. Iron Steel Res. Int. 24 (2017) 998–1006.

    Article  Google Scholar 

  3. [3]

    J.Q. Yin, X.W. Lv, S.L. Xiang, C.G. Bai, B. Yu, ISIJ Int. 53 (2013) 1571–1579.

    Article  Google Scholar 

  4. [4]

    L. Yao, S. Ren, X.Q. Wang, Q.C. Liu, J.L. Zhang, B.X. Su, Metall. Res. Technol. 114 (2017) 204.

    Article  Google Scholar 

  5. [5]

    J. Zhang, X.M. Guo, Y.H. Qi, D.L. Yan, J. Iron Steel Res. Int. 22 (2015) 288–296.

    Article  Google Scholar 

  6. [6]

    G.P. Luo, S.L. Wu, X.B. Jia, X.G. Duan, Z.Z. Hao, J. Iron Steel Res. 25 (2013) No. 10, 10–13.

    Google Scholar 

  7. [7]

    J. Peng, L. Zhang, L.X. Liu, S.L. An, Metall. Mater. Trans. B 48 (2017) 538–544.

    Article  Google Scholar 

  8. [8]

    D. Oliveira, S.L. Wu, Y.M. Dai, J. Xu, H. Chen, J. Iron Steel Res. Int. 19 (2012) No. 6, 1–5.

    Article  Google Scholar 

  9. [9]

    J. Zhang, X.M. Guo, X. J. Huang, J. Iron Steel Res. Int. 19 (2012) No. 10, 1–6.

    Article  Google Scholar 

  10. [10]

    S.L. Wu, Y. Liu, J.X. Du, K. Mi, H. Lin, J. Univ. Sci. Technol. Beijing 24 (2002) 254–257.

    Google Scholar 

  11. [11]

    X.Y. Li, B.X. Su, L.G. Xia, J.L. Zhang, H.W. Guo, J. Iron Steel Res. Int. 22 (2015) 478–486.

    Article  Google Scholar 

  12. [12]

    S.L. Wu, G.L. Zhang, S.G. Chen, B. Su, ISIJ Int. 54 (2014) 582–588.

    Article  Google Scholar 

  13. [13]

    X.W. Lv, C.G. Bai, Q.Y. Deng, X.B. Huang, G.B. Qiu, ISIJ Int. 51 (2011) 722–727.

    Article  Google Scholar 

  14. [14]

    S.L. Wu, B. Su, Y.H. Qi, Y. Li, B.B. Du, Chin. J. Eng. 40 (2018) 321–329.

    Google Scholar 

  15. [15]

    L.H. Hsieh, ISIJ Int. 45 (2005) 551–559.

    Article  Google Scholar 

  16. [16]

    Z.L. Chen, J.L. Zhang, Y.P. Zhang, Z.W. Yan, D. Wang, B. Gao, Iron and Steel 51 (2016) No. 12, 8–14.

    Google Scholar 

  17. [17]

    S.L. Wu, Y.D. Pei, H. Chen, P. Peng, F. Yang, J. Univ. Sci. Technol. Beijing 30 (2008) 1095–1100.

    Google Scholar 

  18. [18]

    M. Zhou, T. Jiang, S.T. Yang, X.X. Xue, Int. J. Miner. Process. 142 (2015) 125–133.

    Article  Google Scholar 

  19. [19]

    S.L. Wu, J.C. Bei, J. Zhu, B. Su, W. Huang, J. Iron Steel Res. 27 (2015) No. 9, 7–13.

    Article  Google Scholar 

  20. [20]

    Q. Wei, X.M. Mao, H.B. Shen, Baosteel Tech. Res. 11 (2017) No. 3, 7–11.

    Google Scholar 

  21. [21]

    T.J. Chun, H.M. Long, J.X. Li, Sep. Sci. Technol. 50 (2015) 760–766.

    Article  Google Scholar 

  22. [22]

    S.W. Kim, J.W. Jeon, I.K. Suh, S.M. Jung, Ironmak. Steelmak. 43 (2016) 500–507.

    Article  Google Scholar 

  23. [23]

    G.L. Zhang, S.L. Wu, S.G. Chen, B. Su, Z.G. Que, C.G. Hou, Int. J. Miner. Metall. Mater. 21 (2014) 962–968.

    Article  Google Scholar 

  24. [24]

    T.L. Li, C.Y. Sun, X.Y. Liu, S. Song, Q. Wang, Ironmak. Steelmak. 45 (2018) 755–763.

    Article  Google Scholar 

  25. [25]

    H.M. Long, X.J. Wu, T.J. Chun, Z.X. Di, B. Yu, Metall. Mater. Trans. B 47 (2016) 2830–2836.

    Article  Google Scholar 

  26. [26]

    W.Q. Huang, X.X. Zhang, Y.X. Liu, Z.W. Zhang, J. Iron Steel Res. 28 (2016) No. 7, 13–19.

    Google Scholar 

  27. [27]

    X. Ding, X.M. Guo, Metall. Mater. Trans. B 46 (2015) 1742–1750.

    Article  Google Scholar 

  28. [28]

    X. Ding, X.M. Guo, C.Y. Ma, K. Tang, Y.D. Zhao, Metall. Mater. Trans. B 46 (2015) 1146–1153.

    Article  Google Scholar 

  29. [29]

    G.P. Luo, S.L. Wu, G.J. Zhang, Y.C. Wang, J. Iron Steel Res. Int. 20 (2013) No. 3, 18–23.

    Article  Google Scholar 

Download references


This work was supported by the Key Project of National Natural Science Foundation of China (Grant No. U1660206) and the Projects of National Natural Science Foundation of China (Grant Nos. 51674002 and 51704009).

Author information



Corresponding authors

Correspondence to Li-xin Qian or Hong-ming Long.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Qian, L., Long, H. et al. Determination method of high-temperature characteristics of iron-ore sintering based on n(Fe2O3)/n(CaO). J. Iron Steel Res. Int. 26, 1257–1264 (2019).

Download citation


  • Iron-ore sintering
  • High-temperature characteristics
  • Liquid phase fluidity
  • Calcium ferrite
  • CaO addition amount