Skip to main content

Advertisement

Log in

Morphology and distribution of precipitates and their effects on compression cracks in Fe-6.5Si-0.02B electrical steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Morphology and distribution of precipitates in the Fe-6.5Si-0.02B alloy were characterized, and these effects on room-temperature compression cracks were investigated. The results showed that the precipitate in the Fe-6.5Si-0.02B alloy is Fe2B with body-centered tetragonal structure, and its nano-hardness is 15.0 GPa which is higher than that of the matrix (~ 8.5 GPa). In the as-cast alloys, most of the intragranular precipitates are coarse lath-like with the length of 5–15 μm and width of 2–5 μm, and the precipitates formed at the grain boundaries are of about 2–3 μm in width. After oil quenching followed by heat treatment at 1100 °C for more than 30 min, the precipitates inside grains are refined with a size of several hundred nanometers and the precipitates at the grain boundaries are refined with a size of < 1 μm. After compression test, transgranular and intergranular cracks occur in the as-cast alloys with coarse precipitates. For the quenched alloys with fine precipitates, the number of cracks decreases significantly, and no transgranular cracks happen because some cracks are blocked or the propagation direction is changed by grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Takada, M. Abe, S. Masuda, J. Inagaki, J. Appl. Phys. 64 (1988) 5367–5369.

    Article  Google Scholar 

  2. T. Watanabe, H. Fujii, H. Oikawa, K. I. Arai, Acta Metall. 37 (1989) 941–952.

    Article  Google Scholar 

  3. S. Wang, Y. Liang, F. Ye, G. Geng, J. Lin, J. Mater. Process. Technol. 249 (2017) 325–330.

    Article  Google Scholar 

  4. H. Li, H. Liu, X. Wang, G. Cao, C. Li, Z. Liu, G. Wang, Mater. Lett. 165 (2016) 5–8.

    Article  Google Scholar 

  5. H. Li, Y. Liang, F. Ye, J. Iron Steel Res. Int. 23 (2016) 453–458.

    Article  Google Scholar 

  6. J. Qin, P. Yang, W. Mao, F. Ye, J. Iron Steel Res. Int. 22 (2015) 852–857.

    Article  Google Scholar 

  7. H. Fu, Z. Zhang, Y. Jiang, J. Xie, J. Alloy. Compd. 689 (2016) 307–312.

    Article  Google Scholar 

  8. H. Fu, Q. Yang, Z. Zhang, J. Xie, J. Mater. Res. 26 (2011) 1711–1718.

    Article  Google Scholar 

  9. B. Viala, J. Degauque, M. Fagot, M. Baricco, E. Ferrara, F. Fiorillo, Mater. Sci. Eng. A 212 (1996) 62–68.

    Article  Google Scholar 

  10. Y. Mo, Z. Zhang, H. Pan, J. Xie, J. Mater. Sci. Technol. 32 (2016) 477–484.

    Article  Google Scholar 

  11. C.C. Lima, M.C.A. Da Silva, M.D.C. Sobral, R.E. Coelho, C. Bolfarini, J. Alloy. Compd. 586 (2014) S314–S316.

    Article  Google Scholar 

  12. Y.F. Liang, J.W. Ge, X.S. Fang, F. Ye, J.P. Lin, Mater. Sci. Eng. A 570 (2013) 8–12.

    Article  Google Scholar 

  13. C. Li, C. Yang, G. Cai, Q. Wang, Mater. Sci. Eng. A 650 (2016) 84–92.

    Article  Google Scholar 

  14. K.N. Kim, L.M. Pan, J.P. Lin, Y.L. Wang, Z. Lin, G.L. Chen, J. Magn. Magn. Mater. 277 (2004) 331–336.

    Article  Google Scholar 

  15. H. Fu, Z. Zhang, X. Wu, J. Xie, Intermetallics 35 (2013) 67–72.

    Article  Google Scholar 

  16. C.H. Cáceres, I.L. Svensson, J.A. Taylor, Int. J. Cast Metal. Res. 15 (2003) 531–543.

    Article  Google Scholar 

  17. D. Zhao, Z. Wang, M. Zuo, H. Geng, Mater. Des. 56 (2014) 589–593.

    Article  Google Scholar 

  18. G. Chen, X. Jin, D. Zhou, S. Wang, W. Xie, L. Wang, Acta Metall. Sin. 41 (2005) 622–626.

    Google Scholar 

  19. B. Lin, W. Zhang, J. Niu, Z. Luo, Y. Zhao, F. Meng, Chin. J. Rare Met. 41 (2017) 225–232.

    Google Scholar 

  20. H. Fu, Q. Yang, Z. Zhang, J. Xie, J. Mater. Res. 26 (2011) 1711–1718.

    Article  Google Scholar 

  21. H. Fu, Y. Mo, L. Zhuo, Z. Zhang, J. Xie, J. Iron Steel Res. Int. 23 (2016) 225–230.

    Article  Google Scholar 

  22. H. Fu, Y. Mo, L. Zhuo, Z. Zhang, J. Xie, J. Iron Steel Res. Int. 23 (2016) 344–349.

    Article  Google Scholar 

  23. H. Fu, Z. Zhang, Y. Jiang, J. Xie, Mater. Lett. 65 (2011) 1416–1419.

    Article  Google Scholar 

  24. Q.L. Yong, Second Phases in Structural Steels, Metallurgical Industry Press, Beijing, 2006.

    Google Scholar 

  25. K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding, Mater. Charact. 59 (2008) 857–862.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Major States Basic Research Development Program of China (973 Program, No. 2011CB606300) and China Postdoctoral Science Foundation (Nos. 2012M520263 and 2013T60110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-dong Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zh., Wang, Jl. & Fu, Hd. Morphology and distribution of precipitates and their effects on compression cracks in Fe-6.5Si-0.02B electrical steel. J. Iron Steel Res. Int. 25, 99–107 (2018). https://doi.org/10.1007/s42243-017-0012-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-017-0012-0

Keywords

Navigation