Advertisement

Morphology and distribution of precipitates and their effects on compression cracks in Fe-6.5Si-0.02B electrical steel

Original Paper
  • 30 Downloads

Abstract

Morphology and distribution of precipitates in the Fe-6.5Si-0.02B alloy were characterized, and these effects on room-temperature compression cracks were investigated. The results showed that the precipitate in the Fe-6.5Si-0.02B alloy is Fe2B with body-centered tetragonal structure, and its nano-hardness is 15.0 GPa which is higher than that of the matrix (~ 8.5 GPa). In the as-cast alloys, most of the intragranular precipitates are coarse lath-like with the length of 5–15 μm and width of 2–5 μm, and the precipitates formed at the grain boundaries are of about 2–3 μm in width. After oil quenching followed by heat treatment at 1100 °C for more than 30 min, the precipitates inside grains are refined with a size of several hundred nanometers and the precipitates at the grain boundaries are refined with a size of < 1 μm. After compression test, transgranular and intergranular cracks occur in the as-cast alloys with coarse precipitates. For the quenched alloys with fine precipitates, the number of cracks decreases significantly, and no transgranular cracks happen because some cracks are blocked or the propagation direction is changed by grain boundary.

Keywords

Fe-6.5 wt% Si alloy Precipitates Nano-hardness Room-temperature compression 

Notes

Acknowledgements

This research was funded by the Major States Basic Research Development Program of China (973 Program, No. 2011CB606300) and China Postdoctoral Science Foundation (Nos. 2012M520263 and 2013T60110).

References

  1. [1]
    Y. Takada, M. Abe, S. Masuda, J. Inagaki, J. Appl. Phys. 64 (1988) 5367–5369.CrossRefGoogle Scholar
  2. [2]
    T. Watanabe, H. Fujii, H. Oikawa, K. I. Arai, Acta Metall. 37 (1989) 941–952.CrossRefGoogle Scholar
  3. [3]
    S. Wang, Y. Liang, F. Ye, G. Geng, J. Lin, J. Mater. Process. Technol. 249 (2017) 325–330.CrossRefGoogle Scholar
  4. [4]
    H. Li, H. Liu, X. Wang, G. Cao, C. Li, Z. Liu, G. Wang, Mater. Lett. 165 (2016) 5–8.CrossRefGoogle Scholar
  5. [5]
    H. Li, Y. Liang, F. Ye, J. Iron Steel Res. Int. 23 (2016) 453–458.CrossRefGoogle Scholar
  6. [6]
    J. Qin, P. Yang, W. Mao, F. Ye, J. Iron Steel Res. Int. 22 (2015) 852–857.CrossRefGoogle Scholar
  7. [7]
    H. Fu, Z. Zhang, Y. Jiang, J. Xie, J. Alloy. Compd. 689 (2016) 307–312.CrossRefGoogle Scholar
  8. [8]
    H. Fu, Q. Yang, Z. Zhang, J. Xie, J. Mater. Res. 26 (2011) 1711–1718.CrossRefGoogle Scholar
  9. [9]
    B. Viala, J. Degauque, M. Fagot, M. Baricco, E. Ferrara, F. Fiorillo, Mater. Sci. Eng. A 212 (1996) 62–68.CrossRefGoogle Scholar
  10. [10]
    Y. Mo, Z. Zhang, H. Pan, J. Xie, J. Mater. Sci. Technol. 32 (2016) 477–484.CrossRefGoogle Scholar
  11. [11]
    C.C. Lima, M.C.A. Da Silva, M.D.C. Sobral, R.E. Coelho, C. Bolfarini, J. Alloy. Compd. 586 (2014) S314–S316.CrossRefGoogle Scholar
  12. [12]
    Y.F. Liang, J.W. Ge, X.S. Fang, F. Ye, J.P. Lin, Mater. Sci. Eng. A 570 (2013) 8–12.CrossRefGoogle Scholar
  13. [13]
    C. Li, C. Yang, G. Cai, Q. Wang, Mater. Sci. Eng. A 650 (2016) 84–92.CrossRefGoogle Scholar
  14. [14]
    K.N. Kim, L.M. Pan, J.P. Lin, Y.L. Wang, Z. Lin, G.L. Chen, J. Magn. Magn. Mater. 277 (2004) 331–336.CrossRefGoogle Scholar
  15. [15]
    H. Fu, Z. Zhang, X. Wu, J. Xie, Intermetallics 35 (2013) 67–72.CrossRefGoogle Scholar
  16. [16]
    C.H. Cáceres, I.L. Svensson, J.A. Taylor, Int. J. Cast Metal. Res. 15 (2003) 531–543.CrossRefGoogle Scholar
  17. [17]
    D. Zhao, Z. Wang, M. Zuo, H. Geng, Mater. Des. 56 (2014) 589–593.CrossRefGoogle Scholar
  18. [18]
    G. Chen, X. Jin, D. Zhou, S. Wang, W. Xie, L. Wang, Acta Metall. Sin. 41 (2005) 622–626.Google Scholar
  19. [19]
    B. Lin, W. Zhang, J. Niu, Z. Luo, Y. Zhao, F. Meng, Chin. J. Rare Met. 41 (2017) 225–232.Google Scholar
  20. [20]
    H. Fu, Q. Yang, Z. Zhang, J. Xie, J. Mater. Res. 26 (2011) 1711–1718.CrossRefGoogle Scholar
  21. [21]
    H. Fu, Y. Mo, L. Zhuo, Z. Zhang, J. Xie, J. Iron Steel Res. Int. 23 (2016) 225–230.CrossRefGoogle Scholar
  22. [22]
    H. Fu, Y. Mo, L. Zhuo, Z. Zhang, J. Xie, J. Iron Steel Res. Int. 23 (2016) 344–349.CrossRefGoogle Scholar
  23. [23]
    H. Fu, Z. Zhang, Y. Jiang, J. Xie, Mater. Lett. 65 (2011) 1416–1419.CrossRefGoogle Scholar
  24. [24]
    Q.L. Yong, Second Phases in Structural Steels, Metallurgical Industry Press, Beijing, 2006.Google Scholar
  25. [25]
    K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding, Mater. Charact. 59 (2008) 857–862.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Amorphous Energy Conservation Materials Industry AllianceBeijingChina

Personalised recommendations