Influence of austempering process on microstructures and mechanical properties of V-containing alloyed ductile iron

Original Paper
  • 1 Downloads

Abstract

The influence of austempering time and vanadium addition on microstructure and mechanical properties of the alloyed ductile iron has been investigated. The 0.30 wt% V-containing and V-free alloyed ductile irons were firstly austenitized at 850 °C for 1 h and then austempered in a salt bath at 300 °C for 2, 3 and 4 h, respectively. For the 0.3 wt% V-containing alloyed ductile iron, the transformation product (ausferrite) was finer, and a small amount of martensite and a large amount of stable austenite were obtained after austempering for 2 h, while higher hardness and compressive strength of 62.8 HRC and 3000 MPa were achieved. For the V-free alloyed ductile iron, lower hardness and compressive strength were measured to be 56.8 HRC and 2320 MPa. As the austempering time increases, the amount of stable austenite decreases in the V-containing ductile iron, typically for the start of the second stage formation (retained austenite (γr) → α + carbide). Based on this, it is assumed that the optimal processing window (OPW) was narrowed due to the addition of 0.30 wt% V as compared to the V-free ductile iron. When the hardness of 0.30 wt% V-alloyed ductile iron was higher than 59 HRC, the highest wear resistance was obtained. The mechanical cutting plays a dominant role in abrasive wear process.

Keywords

Alloyed ductile iron Vanadium Austempering Microstructure Property Wear resistance 

Notes

Acknowledgements

This work was financially supported by the National High Technology Research and Development Program of China (Grant No. 2012AA03A508).

References

  1. [1]
    S.C. Murcia, M.A. Paniagua, E.A. Ossa, Mater. Sci. Eng. A 566 (2013) 8–15.CrossRefGoogle Scholar
  2. [2]
    J.J. Cui, H.Y. Zhang, L.Q. Chen, H.Z. Li, W.P. Tong, Acta Metall. Sin. (Engl. Lett.) 27 (2014) 476–482.CrossRefGoogle Scholar
  3. [3]
    S.F. Liu, Y. Chen, X. Chen, H.M. Miao, J. Iron Steel Res. Int. 19 (2012) No. 2, 36–42.CrossRefGoogle Scholar
  4. [4]
    Y.C. Peng, H.J. Jin, J.H. Liu, G.L. Li, Mater. Sci. Eng. A 529 (2011) 321–325.CrossRefGoogle Scholar
  5. [5]
    Y.C. Peng, H.J. Jin, J.H. Liu, G.L. Li, Mater. Charact. 72 (2012) 53–58.CrossRefGoogle Scholar
  6. [6]
    J.J. Cui, L.Q. Chen, Metall. Mater. Trans. A 46 (2015) 3627–3634.CrossRefGoogle Scholar
  7. [7]
    N. Zhang, J.W. Zhang, L.T. Lu, M.T Zhang, D.F. Zenga, Q.P. Song, Mater. Des. 89 (2016) 815–822.CrossRefGoogle Scholar
  8. [8]
    X.N. Zhang, Y.D. Qu, R.D. Li, J. Iron Steel Res. Int. 22 (2015) 864–869.CrossRefGoogle Scholar
  9. [9]
    H. Bayati, R. Elliott, Int. J. Cast Metals Res. 11 (1999) 413–417.CrossRefGoogle Scholar
  10. [10]
    O. Erić, D. Rajnović, S. Zec, L. Sidjanin, M.T. Jovanović, Mater. Charact. 57 (2006) 211–217.CrossRefGoogle Scholar
  11. [11]
    F.V. Guerra L, A. Bedolla-Jacuinde, I. Mejía, J. Zuno, C. Maldonado, Mater. Sci. Eng. A 648 (2015) 193–201Google Scholar
  12. [12]
    J.F. Dias, G. O. Ribeiro, D.J. Carmo, J.J. Vilela, Mater. Sci. Eng. A 556 (2012) 408–413.CrossRefGoogle Scholar
  13. [13]
    O. Erić, D. Rajnović, L. Šidjanin, S. Zec, T.M. Jovanović, J. Serb. Chem. Soc. 70 (2005) 1015–1022.CrossRefGoogle Scholar
  14. [14]
    U. Batra, S. Ray, S.R. Prabhakar, Mater. Eng. Perform. 12 (2003) 426–429.CrossRefGoogle Scholar
  15. [15]
    U. Batra, S. Ray, S.R. Prabhakar, Mater. Eng. Perform. 12 (2003) 597–601.CrossRefGoogle Scholar
  16. [16]
    T. Nobuki, M. Hatate, T. Shiota, Int. J. Cast Met. Res. 21 (2008) 31–38.CrossRefGoogle Scholar
  17. [17]
    N. Fatahalla, A. AbuElEzz, M. Semeida, Mater. Sci. Eng. A 504 (2009) 81–89.CrossRefGoogle Scholar
  18. [18]
    K.P. Liu, F.M. Wang, J.W. Hao, H. Yu, J. Univ. Sci. Technol. Beijing 26 (2004) 604–606.Google Scholar
  19. [19]
    Y. Wang, W.X. Song, Q.Y. Han, Mater. Mech. Eng. 17 (1993) 6–10.Google Scholar
  20. [20]
    Y. Li, Z.M. Yang, Acta Metall. Sin. 46 (2010) 1501–1510.Google Scholar
  21. [21]
    B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading, MA, 1974, 391–395.Google Scholar
  22. [22]
    D.R. Askeland, Ciencia e Ingenierı´a de los Materiales, Thomson-Paraninfo, Missouri, 2001.Google Scholar
  23. [23]
    M.C. Cakir, A. Bayrama, Y. Isik, B. Salar, Mater. Sci. Eng. A 407 (2005) 147–153.CrossRefGoogle Scholar
  24. [24]
    J.M. Han, Q. Zou, G.C. Barber, T.Nasir, D.O. Northwood, X.C. Sun, P. Seaton, Wear 290–291 (2012) 99–105.CrossRefGoogle Scholar
  25. [25]
    V. Kilicli, M. Erdogan, Int. J. Cast Met. Res. 20 (2007) 202–214.CrossRefGoogle Scholar
  26. [26]
    B. Radulovic, B. Bosnjak, Materiali in Tehnologije 28 (2004) 307–312.Google Scholar
  27. [27]
    X. W. Qi, Z.N. Jia, Q.X. Yang, Y.L. Yang, Surf. Coat. Technol. 205 (2011) 5510–5514.CrossRefGoogle Scholar
  28. [28]
    O. Erić, D. Rajnović, S. Zec, L. Sidjanin, M.T. Jovanović, Mater. Charact. 57 (2006) 211–217.CrossRefGoogle Scholar
  29. [29]
    G.W. Yang, X.J. Sun, Z.D. Li, X.X. Li, Q.L. Yong, Mater. Des. 50 (2013) 102–107.CrossRefGoogle Scholar
  30. [30]
    D. Krishnaraj, H. Narasimham, S. Seshan, AFS Trans. 100 (1992) 105–112.Google Scholar
  31. [31]
    B.V. Kovacs, Modern Cast. 80 (1990) 38–41.Google Scholar
  32. [32]
    M. Kazemipour, H. Shokrollahi, S. Sharafi, Tribol. Lett. 39 (2010) 181–192.CrossRefGoogle Scholar
  33. [33]
    S. Chatterjee, T.K. Pal, Wear 255 (2003) 417–425.CrossRefGoogle Scholar
  34. [34]
    J.J. Cui, L.Q. Chen, H.Z Li, W.P. Tong, Acta Metall. Sin. 53 (2016) 778–786.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina
  2. 2.College of Mechanical and Vehicle EngineeringShenyang Institute of TechnologyFushunChina

Personalised recommendations