Advertisement

Effect of vacuum level on microstructure and mechanical properties of titanium–steel vacuum roll clad plates

  • De-han Yang
  • Zong-an Luo
  • Guang-ming Xie
  • Ming-kun Wang
  • R. D. K. Misra
Original Paper

Abstract

Vacuum roll cladding (VRC) was used to bond pure titanium (Ti) plate to a plain low carbon steel (Q345) with the aim of obtaining a high-quality Ti–steel clad plate. The effect of interfacial compound on the microstructure and mechanical properties of Ti–steel clad plate was studied by electron probe microanalysis, scanning electron microscopy, X-ray diffraction and shear test. The clad plates were heated at 850 °C for 120 min and welded at different levels of vacuum. The results indicated that the cracked zone of the bonded interface decreased significantly with the increase in the level of vacuum during welding. Welding at atmospheric pressure, the randomly distributed TiN damaged the continuity of TiC and the uniformly diffused region of Ti and Fe at the bonded interface, while welding in vacuum of 1 × 10−2 Pa, maximum shear strength of 298 MPa was obtained because of the decrease in TiN content.

Keywords

Vacuum roll cladding Ti–steel clad plate Shear strength Interface Intermetallic compound 

Notes

Acknowledgements

This work was supported by Fundamental Research for the National High Technology Research and Development Program of China (863 Program) (No. 2015AA03A501), National Key Research and Development Program of China (Nos. 2016YFB0300603, 2017YFB0305000, 2017YFB0304100).

References

  1. [1]
    Z.A. Luo, G.L. Wang, G.M. Xie, L.P. Wang, K. Zhao, Acta Metall. Sin. (Engl. Lett.) 26 (2013) 754–760.CrossRefGoogle Scholar
  2. [2]
    J.Y. Si, P.B. Han, J. Zhang, J. Iron Steel Res. Int. 17 (2010) No.8, 67–73.CrossRefGoogle Scholar
  3. [3]
    H. Su, X.B. Luo, F. Chai, J.C. Shen, X.J. Sun, F. Lu, J. Iron Steel Res. Int. 22 (2015) 977–982.CrossRefGoogle Scholar
  4. [4]
    X.D. Huo, L.J. Li, Z.W. Peng, S.J. Chen, J. Iron Steel Res. Int. 23 (2016) 593–601.CrossRefGoogle Scholar
  5. [5]
    A. Elrefaey, W. Tillmann, Metall. Mater. Trans. A 38 (2007) 2956–2962.CrossRefGoogle Scholar
  6. [6]
    K. Nishio, M. Kato, T. Yamaguchi, T. Tokunaga, A. Matsumoto, Weld. Int. 18 (2004) 771–776.CrossRefGoogle Scholar
  7. [7]
    A.A. Elrefaey, W. Tillmann, J. Mater. Sci. 42 (2007) 9553–9558.CrossRefGoogle Scholar
  8. [8]
    S.A. Mousavi, P.F. Sartangi, Mater. Sci. Eng. A 494 (2008) 329–336.CrossRefGoogle Scholar
  9. [9]
    P. Manikandan, K. Hokamoto, M. Fujita, K. Raghukandan, R. Tomoshige, J. Mater. Process. Technol. 195 (2008) 232–240.CrossRefGoogle Scholar
  10. [10]
    S.A. Mousavi, P.F. Sartangi, Mater. Des. 30 (2009) 459–468.CrossRefGoogle Scholar
  11. [11]
    F. Findik, Mater. Des. 32 (2011) 1081–1093.CrossRefGoogle Scholar
  12. [12]
    D.S. Zhao, J.C. Yan, Y. Wang, S.Q. Yang, Mater. Sci. Eng. A 499 (2009) 282–286.CrossRefGoogle Scholar
  13. [13]
    B.V. Borts. Mater. Sci. 47 (2012) 689–695.CrossRefGoogle Scholar
  14. [14]
    J.X. Liu, A.M. Zhao, H.T. Jiang, D. Tang, X.G. Duan, H.Y. Shui, Int. J. Miner. Metall. Mater. 19 (2012) 404–408.CrossRefGoogle Scholar
  15. [15]
    S. Kundu, S. Sam, S. Chatterjee, Mater. Sci. Eng. A 528 (2011) 4910–4916.CrossRefGoogle Scholar
  16. [16]
    D.S. Bae, Y.R. Chae, S.P. Lee, J.K. Lee, S.S. Park, Y.S. Lee, S.M. Lee, Proce. Engin. 10 (2011) 996–1001.CrossRefGoogle Scholar
  17. [17]
    S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G.B. Kale, S. Chatterjee, Mater. Sci. Eng. A 407 (2005) 154–160.CrossRefGoogle Scholar
  18. [18]
    S. Kundu, M. Ghosh, S. Chatterjee, Mater. Sci. Eng. A 428 (2006) 18–23.CrossRefGoogle Scholar
  19. [19]
    M. Ghosh, S. Das, P.S. Banarjee, S. Chatterjee, Mater. Sci. Eng. A 390 (2005) 217–226.CrossRefGoogle Scholar
  20. [20]
    C. Panwisawas, B. Perumal, R.M. Ward, Acta Mater. 126 (2016) 251–263.CrossRefGoogle Scholar
  21. [21]
    J.Q. Shen, B. Li, S.S. Hu, H. Zhang, X.Z. Bu, Opt. Laser Technol. 93 (2017) 118–126.CrossRefGoogle Scholar
  22. [22]
    T.M. Muraleedharan, E.I. Meletis, Thin Solid Films. 221 (1992) 104–113.CrossRefGoogle Scholar
  23. [23]
    H. Akbulut, O.T. Inal, C.A. Zimmerly, J. Mater. Sci. 34 (1999) 1641–1652.CrossRefGoogle Scholar
  24. [24]
    S. Kundu, S. Chatterjee, Mater. Sci. Eng. A 480 (2008) 316–322.CrossRefGoogle Scholar
  25. [25]
    H.T. Jiang, X.Q. Yan, J.X. Liu, X.G. Duan, Trans. Nonferrous Met. Soc. China 24 (2014) 697–704.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • De-han Yang
    • 1
  • Zong-an Luo
    • 1
  • Guang-ming Xie
    • 1
  • Ming-kun Wang
    • 1
  • R. D. K. Misra
    • 2
  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina
  2. 2.Department of Metallurgical, Materials and Biomedical EngineeringUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations