Skip to main content
Log in

Thermodynamic evaluation of reaction abilities of structural units in Fe–C binary melts based on atom–molecule coexistence theory

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The reaction abilities of structural units in Fe–C binary melts over a temperature range above the liquidus lines have been evaluated by a thermodynamic model for calculating the mass action concentrations N i of structural units in Fe–C binary melts based on the atom–molecule coexistence theory (AMCT), i.e., the AMCT-N i model, through comparing with the predicted activities aR,i of both C and Fe by 14 collected models from the literature at four temperatures of 1833, 1873, 1923, and 1973 K. Furthermore, the Raoultian activity coefficient \( \gamma_{\text{C}}^{0} \) of C in infinitely dilute Fe–C binary melts and the standard molar Gibbs free energy change \( \Delta_{\text{sol}} G_{{{\text{m, C}}_{{{\text{dis}} .}} ( {\text{l)}} \to [ {\text{C]}}_{{_{{{{w}}_{{[ {\text{C]}}}}}} {= 1.0}}}}}^{{\Theta,{{\%}}}} \) of dissolved liquid C for forming w[C] as 1.0 in Fe–C binary melts referred to 1 mass% of C as reference state have also been determined to be valid. The determined activity coefficient ln γC of C and activity coefficient ln γFe of Fe including temperature effect for Fe–C binary melts can be described by a quadratic polynomial function and a cubic polynomial function, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

a i :

Activity of element i or compound i;

a R,i :

Activity of element i or compound i relative to pure liquid i or saturated liquid or solid i or pure solid i or diatomic gas i2 as standard state with mole fraction x i as concentration unit and following Raoult’s law under condition of taking ideal solution as reference state, i.e., aR,i = γ i x i ;

\( a_{\text{R,C}}^{\text{AMCT}} \) :

Converted activity aR,C of C in Fe–C binary melts by developed AMCT-N i model;

a %,i :

Activity of element i referred to 1 mass% of element i as standard state with mass percentage w[i] as concentration unit and obeying Henry’s law under condition of taking infinitely dilute ideal solution as reference state, i.e., \( a_{{{{\%,}}i}} = f_{{{{\%,}}i}} w_{[i]} \);

\( a_{{{{\%,{\rm C}}}}}^{\text{AMCT}} \) :

Calculated a%,C of C in Fe–C binary melts by developed AMCT-N i model;

a H,i :

Activity of element i relative to hypothetical pure liquid i as standard state with mole fraction x i as concentration unit and following Henry’s law under condition of taking infinitely dilute ideal solution as reference state, i.e., aH,i = fH,i x i ;

\( a_{\text{H,C}}^{\text{AMCT}} \) :

Calculated aH,C of C in Fe–C binary melts by developed AMCT-N i model;

b i :

Mole number of element i in 100 g metallic melts before reaction equilibrium for forming associated molecules or compounds, having the same meaning with \( n_{i}^{0} \) (mol);

f %,i :

Activity coefficient of element i in metallic melts related with activity a%,i;

f H,i :

Activity coefficient of element i in metallic melts related with activity aH,i;

\( \Delta_{\text{r}} G_{{{\text{m,}}i}}^{{\Theta,{\text{R}}}} \) :

Standard molar Gibbs free energy change of reaction for forming compound i based on activity aR,i for reactants and products (J/mol);

\( \Delta_{\text{sol}} G_{{{\text{m,}}i_{{{\text{dis}} .}} ( {\text{l)}} \to [i ]_{{{\text{w}}_{{[ {}i ]}} {= 1} . 0}}}}^{{\Theta,{{\%}}}} \) :

Standard molar Gibbs free energy change of dissolved liquid element i into metallic melts based on activity a%,i (J/mol);

\( K_{i}^{{\Theta,{\text{R}}}} \) :

Standard equilibrium constant of chemical reaction for forming compound i based on activity aR,i for reactants and products;

M i :

Relative atomic mass of element i;

\( n_{i}^{0} \) :

Mole number of element i in 100 g metallic melts before reaction equilibrium for forming associated molecule or compound, having the same meaning of b i (mol);

n i :

Equilibrium mole number of structural unit i in 100 g metallic melts based on AMCT (mol);

\( \Sigma n_{i} \) :

Total equilibrium mole number of all structural units in 100 g metallic melts based on AMCT (mol);

N i :

Mass action concentrations of structural unit i in metallic melts based on AMCT;

\( N_{i}^{\prime} \) :

Converted mass action concentrations of structural unit i in metallic melts based on AMCT;

R :

Gas constant, 8.314 J/(mol K);

T :

Absolute temperature (K);

x i :

Mole fraction of element i or compound i in metallic melts;

w [i] :

Mass percentage of element i or compound i in metallic melts (%);

i dis.(l):

Dissolved element i or compound i in liquid state;

γ i :

Activity coefficient of element i related with activity aR,i;

\( \gamma_{i}^{0} \) :

Raoultian activity coefficient of element i in infinitely dilute metallic melts relative to pure liquid i or saturated liquid i or pure solid i or diatomic gas i2 (g) as standard state and taking infinitely dilute ideal solution as reference state, i.e., equal to value of \( \gamma_{{i,x_{i} \to 0.0}} \);

References

  1. K. Sanbongi, M. Ohtani, Tetsu-to-Hagané 39 (1953) 483–487.

    Article  Google Scholar 

  2. F. D. Richardson, W. E. Dennis, Trans. Faraday Soc. 49 (1953) 171–180.

    Article  Google Scholar 

  3. K. Sanbongi, M. Ohtani, Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 5 (1953) 263–270.

    Google Scholar 

  4. K. Sanbongi, M. Ohtani, Tetsu-to-Hagané 40 (1954) 1106–1109.

    Article  Google Scholar 

  5. A. Rist, J. Chipman, Rev. Metall. 53 (1956) 796–807.

    Article  Google Scholar 

  6. E. T. Turkdogan, L. E. Leake, C. R. Masson, Acta Metall. 4 (1956) 396–406.

    Article  Google Scholar 

  7. T. Syu, A. Y. Polyakov, A. M. Samarin, Izv. V. U. Z. Chern. Met. 2 (1959) No. 11, 3–12.

  8. S. Ban-ya, S. Matoba, Tetsu-to-Hagané 48 (1962) 925–932.

    Article  Google Scholar 

  9. T. Yagi, Y. Ono, Tetsu-to-Hagané 49 (1963) 133–138.

    Article  Google Scholar 

  10. U. Feldmann, Arch. Eisenhüttenwes 34 (1963) 49–54.

    Article  Google Scholar 

  11. T. Mori, K. Fujimura, H. Okajima, A. Yamauchi, Tetsu-to-Hagané 54 (1968) 321–329.

    Article  Google Scholar 

  12. G. L. Howkes, D. R. Morris, Trans. Metall. Soc. AIME 242 (1968) 1083–1089.

    Google Scholar 

  13. J. Chipman, Metall. Trans. 1 (1970) 2163–2168.

    Article  Google Scholar 

  14. V. I. Yavoiskii, A. G. Svyasin, A. F. Vishkarev, K. B. Nguyen, A. D. Romanovich, G. M. Chursin, Russ. Metall. 3 (1971) 33–40.

    Google Scholar 

  15. A. Ueda, K. Fujimura, T. Mori, Tetsu-to-Hagané 61 (1975) 2962–2971.

    Article  Google Scholar 

  16. S. Matoba, S. Ban-ya, Tetsu-to-Hagané 66 (1980) 1406–1422.

    Article  Google Scholar 

  17. Y. E. Lee, Metall. Mater. Trans. B 29 (1998) 397–403.

    Article  Google Scholar 

  18. J. Chipman, Metall. Trans. 3 (1972) 55–64.

    Article  Google Scholar 

  19. J. Ågren, Metall. Trans. A 10A (1979) 1847–1852.

    Article  Google Scholar 

  20. E. Schürmann, R. Schmid, Arch. Eisenhüttenwes 50 (1979) 101–106.

    Article  Google Scholar 

  21. H. Okamoto, J. Phase Equilib 13 (1992) 543–565.

    Article  Google Scholar 

  22. X. M. Yang, M. Zhang, P. C. Li, J. Y. Li, J. L. Zhang, J. Zhang, Metall. Mater. Trans. B 43 (2012) 1358–1387.

    Article  Google Scholar 

  23. X. M. Yang, M. Zhang, P. C. Li, J. Y. Li, J. Zhang, Steel Res. Int. 84 (2013) 784–811.

    Article  Google Scholar 

  24. X. M. Yang, J. Y. Li, P. C. Li, M. Zhang, J. Zhang, Steel Res. Int. 85 (2014) 164–206.

    Article  Google Scholar 

  25. X. M. Yang, P. C. Li, J. Y. Li, J. L. Zhang, M. Zhang, J. Zhang, Steel Res. Int. 85 (2014) 426–460.

    Article  Google Scholar 

  26. X. M. Yang, J. Y. Li, M. F. Wei, J. Zhang, Metall. Mater. Trans. B 47 (2016) 174–206.

    Article  Google Scholar 

  27. J. Zhang, Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  28. X. M. Yang, J. S. Jiao, R. C. Ding, C. B. Shi, H. J. Guo, ISIJ Int. 49 (2009) 1828–1837.

    Article  Google Scholar 

  29. C. B. Shi, X. M. Yang, J. S. Jiao, C. Li, H. J. Guo, ISIJ Int. 50 (2010) 1362–1372.

    Article  Google Scholar 

  30. X. M. Yang, C. B. Shi, M. Zhang, G. M. Chai, F. Wang, Metall. Mater. Trans. B 42 (2011) 1150–1580.

    Article  Google Scholar 

  31. X. M. Yang, C. B. Shi, M. Zhang, G. M. Chai, J. Zhang, Metall. Mater. Trans. B 43 (2012) 241–266.

    Article  Google Scholar 

  32. X. M. Yang, J. P. Duan, C. B. Shi, M. Zhang, Y. L Zhang, J. C. Wang, Metall. Mater. Trans. B 42 (2011) 738–770.

    Article  Google Scholar 

  33. X. M. Yang, C. B. Shi, M. Zhang, J. P. Duan, J. Zhang, Metall. Mater. Trans. B 42 (2011) 951–976.

    Article  Google Scholar 

  34. X. M. Yang, C. B. Shi, M. Zhang, J. Zhang, Steel Res. Int. 83 (2012) 244–258.

    Article  Google Scholar 

  35. X. M. Yang, M. Zhang, J. L. Zhang, P. C. Li, J. Y. Li, J. Zhang, Steel Res. Int. 85 (2014) 347–375.

    Article  Google Scholar 

  36. J. Y. Li, M. Zhang, M. Guo, X. M. Yang, Metall. Mater. Trans. B 45 (2014) 1666–1682.

    Article  Google Scholar 

  37. X. M. Yang, J. Y. Li, G. M. Chai, M. Zhang, J. Zhang, Metall. Mater. Trans. B 45 (2014) 2118–2137.

    Article  Google Scholar 

  38. J. Y. Zhang, Metallurgical Physicochemistry, Metallurgical Industry Press, Beijing, 2004.

    Google Scholar 

  39. X. H. Huang, Principles of Ironmaking and Steelmaking, 3rd ed., Metallurgical Industry Press, Beijing, 2005.

    Google Scholar 

  40. S. K. Wei, Thermodynamics of Metallurgical Processes, Science Press, Beijing, 2010.

    Google Scholar 

  41. J. Chipman, R. M. Alfred, L.W. Gott, R. B. Small, D. M. Wilson, C. N. Thomson, D.L Guernsey, J.C. Fulton, Trans. Am. Soc. Metals 44 (1952) 1215–1232.

  42. J. A. Kichener, J. Bockris, D.A. Spratt, Trans.Far. Soc. 48 (1952) 608–617.

    Article  Google Scholar 

  43. E. T. Turkdogan, L. E. Leake, J. Iron Steel Inst. 179 (1955) 39–45.

    Google Scholar 

  44. S. Matoba, S. Ban-ya, Tetsu-to-Hagané 43 (1957) 790–796.

    Article  Google Scholar 

  45. K. Suzuki, M. Fukumoto, Y. Nakagawa, J. Jpn. Inst. Met. Mater. 30 (1966) 50–51.

    Article  Google Scholar 

  46. 19th Committee on Steelmaking, Japan Society for the Promotion of Science, Steelmaking Data Sourcebook, Gordon and Breach Science Publishers SA Montreux, Switzerland, 1988.

Download references

Acknowledgements

This work is supported by the Beijing Natural Science Foundation (Grant No. 2182069) and the National Natural Science Foundation of China (Grant No. 51174186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-min Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Xm., Li, Jy., Duan, Dp. et al. Thermodynamic evaluation of reaction abilities of structural units in Fe–C binary melts based on atom–molecule coexistence theory. J. Iron Steel Res. Int. 25, 37–56 (2018). https://doi.org/10.1007/s42243-017-0008-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-017-0008-9

Keywords

Navigation