Advertisement

Effect of metallurgical dust on NO emissions during coal combustion process

  • Zhi-fang Gao
  • Hong-ming Long
  • Tie-jun Chun
  • Zhao-jin Wu
  • Zheng-wei Yu
Original Paper

Abstract

NO emissions from coal combustion are receiving significant attention in recent years. As a solid waste generated from metallurgical industry, metallurgical dust (MD) contains a large amount of metal oxides, such as Fe2O3, CaO, SiO2 and Al2O3, as well as other rare metal oxides. The influence of MD on the NO emissions and the mechanism of the coal combustion systems were analyzed. The results show that the peak values of NO emission decrease with the increase in MD mass percent, and the curve of NO emission can be divided into two stages including rapid generation (400−600 °C) and slow release (800−900 °C). The reduction of NO is significantly affected by temperature, volatile components, O2 and CO. CO has a significant catalytic action which can deoxidize NO to N2. The results obtained by X-ray diffraction and scanning electron microscopy indicate that multiple components in MD, such as Fe9TiO15, Fe2O3 and TiO2, can react with NO to produce TiN. Besides, the alkali metals in MD, such as Na, K and Ca, may catalyze NO precursor to inhibit NO emission. These results indicate that MD is cheap and highly efficient in controlling NO emissions during coal combustion processes.

Keywords

Metallurgical dust NO emission Reaction mechanism Coal combustion 

Notes

Acknowledgements

This work was financially supported by the Joint Fund of the National Natural Science Foundation of China and the Baosteel Group Corporation (No. U1660106).

References

  1. [1]
    E. Rokni, A. Panahi, X.H. Ren, Y.A. Levendis, Fuel 181 (2016) 772–784.CrossRefGoogle Scholar
  2. [2]
    Z.C. Chen, Z.W. Wang, Z.Q. Li, Y.Q. Xie, S.G. Ti, Q.Y. Zhu, Energy 73 (2014) 844–855.CrossRefGoogle Scholar
  3. [3]
    L.B. Duan, Y.Q. Duan, C.S. Zhao, E.J. Anthony, Fuel 150 (2015) 8–13.CrossRefGoogle Scholar
  4. [4]
    D.S. Jin, B.R. Deshwal, Y.S. Park, H.K. Lee, J. Hazard. Mater. 135 (2006) 412–417.CrossRefGoogle Scholar
  5. [5]
    W.D. Fan, Z.C. Lin, J.G. Kuang, Y.Y. Li, Fuel Process. Technol. 91 (2010) 625–634.CrossRefGoogle Scholar
  6. [6]
    Y. Zhao, R.L. Hao, M. Qi, Chem. Eng. J. 269 (2015) 159–167.CrossRefGoogle Scholar
  7. [7]
    A.C. Bose, K.M. Dannecker, J.L. Wendt, Energy Fuels 3 (1988) 301–308.CrossRefGoogle Scholar
  8. [8]
    L. Jia, Y. Tan, E. J. Anthony, Energy Fuels 24 (2010) 910–915.CrossRefGoogle Scholar
  9. [9]
    Y. Liu, F. Rehman, W.B. Zimmerman, Fuel 209 (2017) 117–126.CrossRefGoogle Scholar
  10. [10]
    B.R. Deshwal, D.S. Jin, S.H. Lee, S.H. Moon, J.H. Jung, H.K. Lee, J. Hazard. Mater. 150 (2008) 649–655.CrossRefGoogle Scholar
  11. [11]
    J. Riaza, M.V. Gil, L. Álvarez, C. Pevida, J.J. Pis, F. Rubiera, Energy 41 (2012) 429–435.CrossRefGoogle Scholar
  12. [12]
    L. Dong, S.Q. Gao, G.G. Xu, Energy Fuels 24 (2010) 446–450.CrossRefGoogle Scholar
  13. [13]
    Y. Ohtsuka, Z. Wu, F. Edward, Fuel 76 (1997) 1361–1367.CrossRefGoogle Scholar
  14. [14]
    Z.H. Wu, Y. Sugimoto, H. Kawashima, Fuel 82 (2003) 2057–2064.CrossRefGoogle Scholar
  15. [15]
    N. Tsubouchi, Y. Ohtsuka, Fuel 81 (2002) 1423–1431.CrossRefGoogle Scholar
  16. [16]
    Z.B. Zhao, W. Li, J.S. Qiu, B.Q. Li, Fuel 81 (2002) 2343–2348.CrossRefGoogle Scholar
  17. [17]
    J. Li, S. Wang, L. Zhou, G.H. Luo, F. Wei, Chem. Eng. J. 255 (2014) 126–133.CrossRefGoogle Scholar
  18. [18]
    Z. Zhao, W. Li, J. Qiu, X. Wang, B. Li, Fuel 85 (2006) 601–606.CrossRefGoogle Scholar
  19. [19]
    W. Yang, J. Zhou, Z. Zhou, Z. Lu, Z. Wang, J. Liu, K. Cen, Fuel Process. Technol. 89 (2008) 1317–1323.CrossRefGoogle Scholar
  20. [20]
    B. Das, S. Prakash, P.S.R. Reddy, V.N. Misra, Resour. Conserv. Recycl. 50 (2007) 5040–5057.CrossRefGoogle Scholar
  21. [21]
    T. Kuroki, Y. Uchida, H. Takizawa, K. Morita, ISIJ Int. 47 (2007) 592–595.CrossRefGoogle Scholar
  22. [22]
    X.F. She, J.S. Wang, Q.G. Xue, Y.G. Ding, S.S. Zhang, J.J. Dong, H. Zeng, Int. J. Miner. Metall. Mater. 18 (2011) 277–284.CrossRefGoogle Scholar
  23. [23]
    L.Z. Shen, Y.S. Qiao, Y. Guo, J.R. Tan, J. Hazard. Mater. 177 (2010) 495–500.CrossRefGoogle Scholar
  24. [24]
    Z.F. Gao, Z.J. Wu, M.D. Zheng, Energy Fuels 30 (2016) 3320–3330.CrossRefGoogle Scholar
  25. [25]
    L. Deng, X. Jin, Y. Zhang, D.F. Che, Fuel 175 (2016) 217–224.CrossRefGoogle Scholar
  26. [26]
    L.H. Wei, D. Qi, R.D. Li, Journal of China Coal Society 35 (2010) 1706–1710.Google Scholar
  27. [27]
    F. He, H. Wang, Y.N. Dai, Natural Gas Chem. 16 (2007) 155–161.CrossRefGoogle Scholar
  28. [28]
    C.P. Finimore, Combust. Flame 26 (1976) 249–260.CrossRefGoogle Scholar
  29. [29]
    Y.C. Zhang, J. Zhang, C.D. Sheng, J. Chen, Y.X. Liu, L. Zhao, F. Xie, Energy Fuels 25 (2011) 240–245.CrossRefGoogle Scholar
  30. [30]
    F. Normann, K. Andersson, B. Leckner, F. Johnsson, Energy Fuels 24 (2010) 910–915.CrossRefGoogle Scholar
  31. [31]
    G.G. De Soete, E. Croiset, J.R. Richard, Combust. Flame 117 (1999) 140–154.CrossRefGoogle Scholar
  32. [32]
    S.J. Wang, C. J. Huang, F. Wu, J. Energy Inst. 86 (2013) 167–170.CrossRefGoogle Scholar
  33. [33]
    T.C. Brown, B.S. Haynes, Energy Fuels 6 (1992) 154–159.CrossRefGoogle Scholar
  34. [34]
    A. Molina, E.G. Eddings, D.W. Pershing, A.F. Sarofim, Combust. Flame 136 (2004) 303–312.CrossRefGoogle Scholar
  35. [35]
    B. Guo, Z. Liu, L. Hong, H. Jiang, Surf. Coat. Technol. 198 (2005) 24–29.CrossRefGoogle Scholar
  36. [36]
    R.D. Peelamedu, M. Fleming, D.K. Agrawal, R. Roy, J. Am. Ceram. Soc. 85 (2010) 117–122.CrossRefGoogle Scholar
  37. [37]
    L.J. Liu, H.J. Liu, M.Q. Cui, Fuel 112 (2013) 687–694.CrossRefGoogle Scholar
  38. [38]
    S.Q. Wang, Y. Zhao, P.P. Zhang, Chem. Eng. Res. Des. 89 (2011) 1061–1066.CrossRefGoogle Scholar
  39. [39]
    K.T. Lee, K.C. Tan, I. Dahlan, A.R. Mohamed, Fuel 87 (2008) 2223–2228.CrossRefGoogle Scholar
  40. [40]
    Z. Zhao, W. Li, J. Qiu, B. Li, Fuel 81 (2002) 2343–2348.CrossRefGoogle Scholar
  41. [41]
    O. Yasuo, Z.H. Wu, F. Edward, Fuel 76 (1997) 1361–1367.CrossRefGoogle Scholar
  42. [42]
    F. Wu, S.J. Wang, G. Zhang, P. Zhu, Z.Y. Wang, J. Energy Inst. 87 (2014) 134–139.CrossRefGoogle Scholar
  43. [43]
    Z. Zhao, W. Li, J. Qiu, B. Li, Fuel 82 (2003) 1839–1844.CrossRefGoogle Scholar
  44. [44]
    F. Okasha, Fuel. Process. Technol. 88 (2007) 401–408.CrossRefGoogle Scholar
  45. [45]
    M. Illan-Gomez, A. Linares-Solano, L.R. Radovic, C. Salinas-Martínez de Lecea, Energy Fuels 58 (1996) 58–168.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Zhi-fang Gao
    • 1
    • 2
  • Hong-ming Long
    • 1
    • 2
  • Tie-jun Chun
    • 1
  • Zhao-jin Wu
    • 2
  • Zheng-wei Yu
    • 1
  1. 1.School of Metallurgy EngineeringAnhui University of TechnologyMa’anshanChina
  2. 2.Key Laboratory of Metallurgical Emission Reduction and Resources Recycling, Ministry of EducationAnhui University of TechnologyMa’anshanChina

Personalised recommendations