Interfacial reaction between oxide inclusion and steel matrix deoxidized by Si and Mn at 1473 K

  • Xue-liang Zhang
  • Shu-feng Yang
  • Cheng-song Liu
  • Jing-she Li
  • Qing Liu
  • Gang Liu
Original Paper


An improved diffusion couple method was used to simulate the dynamic process of the solid-state reaction at the interface between oxide inclusions and a steel matrix deoxidized by Si and Mn during heat treatment at 1473 K. Experimental results indicated that good contact between the oxide and steel matrix was attained after pre-treatment at 1673 K. In addition, the reaction between the oxide and steel matrix at 1673 K was suppressed, and the effect of this reaction on the diffusion couple experiments at 1473 K was minimized. In the diffusion couple experiments, the diffusion of oxygen from the oxide to the steel matrix resulted in the precipitation of fine oxide particles and a decrease in the Mn content in the steel matrix near the interface after heat treatment at 1473 K. With increasing heat treatment time, the widths of the particle precipitation zone (PPZ) and Mn-depleted zone (MDZ) gradually increased. In addition, the solid-state reaction at the interface between the oxide and steel matrix was intense, and the widths of the PPZ and MDZ increased rapidly during the 0–20 h stage of heat treatment, especially during the 0–5 h stage. The interfacial reaction was retarded, and the rates of width expansion of PPZ and MDZ decreased with increasing heat treatment time.


Oxide inclusion Diffusion couple Heat treatment Solid-state reaction Interfacial reaction 



The authors are grateful to the financial support from the National Natural Science Foundation of China (Nos. 51574020, 51674023, and 51604201).


  1. [1]
    F.M. Yuan, X.H. Wang, X.F. Yang, J. Univ. Sci. Technol. Beijing 13 (2006) 486–489.CrossRefGoogle Scholar
  2. [2]
    H. Ono, K. Nakajima, T. Ibuta, T. Usui, ISIJ Int. 50 (2010) 1955–1958.CrossRefGoogle Scholar
  3. [3]
    S.F. Yang, J.S. Li, Z.F. Wang, J. Li, L. Lin, Int. J. Miner. Metall. Mater. 18 (2011) 18–23.CrossRefGoogle Scholar
  4. [4]
    J. Yang, X.H. Wang, M. Jiang, W. J. Wang, J. Iron Steel Res. Int. 18 (2011) No. 7, 8–14.CrossRefGoogle Scholar
  5. [5]
    Z.J. Cheng, J. Guo, S.S. Cheng, J. Iron Steel Res. Int. 20 (2013) No. 2, 14–20.MathSciNetCrossRefGoogle Scholar
  6. [6]
    S.F. Yang, J.S. Li, L.F. Zhang, P. Kent, Z.F. Wang, J. Iron Steel Res. Int. 17 (2010) No. 7, 1–6.CrossRefGoogle Scholar
  7. [7]
    H.X. Yu, X.H. Wang, J. Zhang, W.J. Wang, J. Iron Steel Res. Int. 22 (2015) 573–581.CrossRefGoogle Scholar
  8. [8]
    F. Zhang, G.Q. Li, J. Iron Steel Res. Int. 20 (2013) No. 4, 20–25.CrossRefGoogle Scholar
  9. [9]
    I. Takahashi, T. Sakae and T. Yoshida, Tetsu-to-Hagane 53 (1967) 350–353.CrossRefGoogle Scholar
  10. [10]
    I. Takahashi, T. Sakae, T. Yoshida, Tetsu-to-Hagane 53 (1967) S273.CrossRefGoogle Scholar
  11. [11]
    W.J. Choi, H. Matsuura, F. Tsukihashi, ISIJ Int. 51 (2011) 1951–1956.CrossRefGoogle Scholar
  12. [12]
    J.H. Park, D.S. Kim, Metall. Trans. B 36 (2005) 495–502.CrossRefGoogle Scholar
  13. [13]
    C. Lee, S. Nambu, J. Inoue, T. Koseki, ISIJ Int. 51 (2011) 2036–2041.CrossRefGoogle Scholar
  14. [14]
    K. Takano, R. Nakao, S. Fukumoto, T. Tsuchiyama, S. Takaki, Tetsu-to-Hagane 89 (2003) 616–622.CrossRefGoogle Scholar
  15. [15]
    H. Shibata, K. Kimura, T. Tanaka, S.Y. Kitamura, ISIJ Int. 51 (2011) 1944–1950.CrossRefGoogle Scholar
  16. [16]
    H. Shibata, T. Tanaka, K. Kimura, S.Y. Kitamura, Ironmak. Steelmak. 37 (2010) 522–528.CrossRefGoogle Scholar
  17. [17]
    K.H. Kim, S.J. Kim, H. Shibata, S.Y. Kitamura, ISIJ Int. 54 (2014) 2144–2153.CrossRefGoogle Scholar
  18. [18]
    K.H. Kim, H. Shibata, S.Y. Kitamura, ISIJ Int. 54 (2014) 2678–2686.CrossRefGoogle Scholar
  19. [19]
    C.S. Liu, S.F. Yang, J.S. Li, H.W. Ni, X.L. Zhang, Metall. Trans. B 48 (2017) 1348–1357.CrossRefGoogle Scholar
  20. [20]
    C.S. Liu, K.H. Kim, S.J. Kim, J.S. Li, S. Ueda, X. Gao, H. Shibata, S.Y. Kitamura, Metall. Trans. B 46 (2015) 1875–1884.CrossRefGoogle Scholar
  21. [21]
    C.S. Liu, S.F. Yang, K. Kim, J.S. Li, H. Shibata, S.Y. Kitamura, Int. J. Miner. Metall. Mater. 22 (2015) 811–819.CrossRefGoogle Scholar
  22. [22]
    S. Ban-Ya, E. Tasuhiko, Physical Chemistry of Metals, Maruzen Press, Tokyo, 1996.Google Scholar
  23. [23]
    S. Ban-Ya, ISIJ Int. 33 (1993) 2–11.CrossRefGoogle Scholar
  24. [24]
    M. Hino, K. Ito, Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2010.Google Scholar
  25. [25]
    C. Wagner, Z. Elektrochem. 63 (1959) 772–782.Google Scholar
  26. [26]
    J.H. Swisher, E.T. Turkdogan, Trans. Met. Soc. AIME 239 (1967) 426–431.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Key Laboratory of Special Melting and Preparation of High-End MetalsBeijingChina
  3. 3.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina

Personalised recommendations