Journal of Iron and Steel Research International

, Volume 25, Issue 1, pp 120–130 | Cite as

Corrosion behavior of low alloy steel for cargo oil tank under upper deck conditions

  • Hao Li
  • Feng Chai
  • Cai-fu Yang
  • Chao Li
  • Xiao-bing Luo
Original Paper
  • 1 Downloads

Abstract

A simulated corrosion test apparatus was used to investigate the corrosion behavior of a low alloy steel under simulated upper deck conditions in a cargo oil tank. The estimated corrosion loss of conventional E36 class ship plate steel is 4.27 mm, which is clearly inadequate compared with the standard adopted by International Maritime Organization. Outer rust layer of specimens starts to peel off after 77 days and becomes fragmented after 98 days. X-ray diffraction, scanning electron microscopy, and Raman spectroscopy revealed that the resulting rust is composed of σ-FeOOH (the main protective phase), Fe2O3, FeS, elemental S, and FeSO4. FeSO4 in the interface of the base and rust layer leads to localized corrosion. Elemental sulfur forms on the surface of σ-FeOOH, and the quantity and size thereof increase with increasing corrosion time. Furthermore, layered elemental sulfur promotes fracture and peels off the rust layer.

Keywords

Low alloy steel Cargo oil tank Upper deck Corrosion film Elemental sulfur 

References

  1. [1]
    P. Tscheliesnig, in: WCNDT 2004, Proceeding of 16th World Conference on Nondestructive Testing, WCNDT 2004, Montreal, 2004, pp. 111–119.Google Scholar
  2. [2]
    C.G. Soares, Y. Garbatov, A. Zayed, G. Wang, Corros. Sci. 50 (2008) 3095–3106.CrossRefGoogle Scholar
  3. [3]
    K. Kashima, Y. Tanino, S. Kubo, A. Inami, H. Miyuki, in: JASNAOE-RINA (Eds.), Shipbuilding Technology ISST, NMRI(Japan)-LLOYD’S REGISTER ASIA, Osaka, 2007, pp. 5–10.Google Scholar
  4. [4]
    M.Yoshikawa, Corros. Eng. 53 (2004) 433–448.CrossRefGoogle Scholar
  5. [5]
    A. Zayed, Y. Garbatov, C.G. Soares, in: ASME 2007, Proceedings of OMAE2007 26th International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, San Diego, 2007, pp. 567–578.Google Scholar
  6. [6]
    Z. Peng, J. Liang, F. Zhang, H. Wu, D. Tang, J. Iron Steel Res. Int. 22 (2015) 630–637.CrossRefGoogle Scholar
  7. [7]
    T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida, Corros. Sci. 48 (2006) 2799–2812.CrossRefGoogle Scholar
  8. [8]
    D. De la Fuente, I. Díaz, J. Simancas, B. Chico, M. Morcillo, Corros. Sci. 53 (2011) 604–617.CrossRefGoogle Scholar
  9. [9]
    J. Guo, S. Yang, C. Shang, Y. Wang, X. He, Corros. Sci. 51 (2009) 242–251.CrossRefGoogle Scholar
  10. [10]
    M. Yamashita, H. Konishi, T. Kozakura, J. Kozakura, H. Uchida, Corros. Sci. 47 (2005) 2492–2498.CrossRefGoogle Scholar
  11. [11]
    Y. Xiang, Z. Wang, C. Xu, C. Zhou, Z. Li, W. Ni, J. Supercrit. Fluid. 58 (2011) 286–294.CrossRefGoogle Scholar
  12. [12]
    M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, T. Misawa, Corros. Sci. 36 (1994) 283–299.CrossRefGoogle Scholar
  13. [13]
    I.M. Allam, J.S. Arlow, H. Saricimen, Corros. Sci. 32 (1991) 417–432.CrossRefGoogle Scholar
  14. [14]
    P. Wang, J. Wang, S. Zheng, Y. Qi, M. Xiong, Y. Zheng, Int. J. Hydrogen Energy 40 (2015) 11925–11930.Google Scholar
  15. [15]
    D. Abayarathna, A.R. Naraghi, S. Wang, in: Corrosion 2005, NACE International, Houston, USA, 2005, pp. 05624.Google Scholar
  16. [16]
    Y. Ma, Y. Li, F. Wang. Mater. Chem. Phys. 112 (2008) 844–852.CrossRefGoogle Scholar
  17. [17]
    K.T. Li, C.S. Yen, N.S. Shyu, Appl. Catal. A-Gen. 156 (1997) 117–130.CrossRefGoogle Scholar
  18. [18]
    M. Kouichi, M. Kazuhiro, I. Tomohiko, Y. Tomoyuki, N. Hiroyuki, H. Kenji, Ind. Eng. Chem. Res. 31 (1992) 415–419.CrossRefGoogle Scholar
  19. [19]
    H.C. Chi, S.K. Sharma, D.W. Muenow, J. Raman Spectrosc. 38 (2007) 87–99.CrossRefGoogle Scholar
  20. [20]
    J. Gui, T.M. Devine, Corros. Sci. 36 (1994) 441–462.CrossRefGoogle Scholar
  21. [21]
    L.J. Oblonsky, T.M. Devine, Corros. Sci. 37 (1995) 17–41.CrossRefGoogle Scholar
  22. [22]
    J. Gui, T.M. Devine, Corros. Sci. 37 (1995) 1177–1189.CrossRefGoogle Scholar
  23. [23]
    J.H. Wang, F.I. Wei, Y.S. Chang, H.C. Shih, Mater. Chem. Phys. 47 (1997) 1–8.CrossRefGoogle Scholar
  24. [24]
    D.D. MacDonald, B. Roberts, J.B. Hyne, Corros. Sci. 18 (1978) 411–425.CrossRefGoogle Scholar
  25. [25]
    J.K. Heuer, J.F. Stubbins, Corros. Sci. 41 (1999) 1231–1243.CrossRefGoogle Scholar
  26. [26]
    Y. Hua, R. Barker, A. Neville, Appl. Surf. Sci. 356 (2015) 499–511.CrossRefGoogle Scholar
  27. [27]
    M. Steijns, F. Derks, A. Verloop, P. Mars, J. Catal. 42 (1976) 87–95.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Hao Li
    • 1
  • Feng Chai
    • 1
  • Cai-fu Yang
    • 1
  • Chao Li
    • 2
  • Xiao-bing Luo
    • 1
  1. 1.Central Iron and Steel Research InstituteBeijingChina
  2. 2.Qingdao NCS Testing Protection Technology Co., Ltd.QingdaoChina

Personalised recommendations