Thermodynamic analysis of improvement of converter gas by injecting pulverized coal into vaporization cooling flue

  • Jian-an Zhou
  • Xue-kai Jiang
  • Jian-bo Xie
  • Hua Zhang
  • Lei Li
  • Bao Wang
  • Hong-wei Ni
Original Paper
  • 1 Downloads

Abstract

In order to improve the calorific value and the recovery yield of converter gas during the steelmaking process, a novel and thermodynamically admissible process was proposed. This method involved injecting pulverized coal into the vaporization cooling flue of a converter, and the approach was developed based on an industrial 30 t converter. The effects of temperature, O2 content, and the volumetric ratio of CO to CO2 on the conversion of the mixed components of gas were analyzed using thermodynamic calculations. Furthermore, the effect of the injection rate on the quality and quantity of gas was investigated. The results show that the O2 and CO2 components of flue gas decrease as the injection rate increases, whereas the CO and H2 components synchronously increase. With the injection rate of 30 kg min−1, the O2 and CO2 components of the gas decreased by 64.12 and 41.19%, respectively, while the CO and H2 increased by 20.09 and 236.84%, respectively, and the recovery time of gas increased by 11.61%, compared to non-injection.

Keywords

Converter Gas recovery Vaporization cooling flue CO2 Pulverized coal 

References

  1. [1]
    A. H. Wang, J. J. Cai, X. P. Li, D. Wang, Q. A. Zhou, J. Iron Steel Res. Int. 14 (2007) No. 6, 22–26.CrossRefGoogle Scholar
  2. [2]
    X. P. Li, J. J. Cai, R. Y. Yin, D. Wang, Q. A. Zhou, Iron and Steel 38 (2003) No. 5, 50–52.Google Scholar
  3. [3]
    C. B. Xu, D. Q. Cang, J. Iron Steel Res. Int. 17 (2010) No. 3, 1–7.CrossRefGoogle Scholar
  4. [4]
    H. Li, Y. Qu, China Metallurgy 20 (2010) No. 9, 45–48.Google Scholar
  5. [5]
    F. Peng, Steelmaking 24 (2008) No. 6, 60–62.Google Scholar
  6. [6]
    B. Yu, China Metallurgy 10 (2003) No. 1, 14–17.Google Scholar
  7. [7]
    X. L. Pan, G. H. Chang, S. C. Feng, Y. H. Wang, H. Z. Liang, Energy for Metallurgical Industry 29 (2010) No. 5, 37–42.Google Scholar
  8. [8]
    N. Maruoka, T. Mizuochi, H. Purwanto, T. Akiyama, ISIJ Int. 44 (2004) No. 2, 257–262.CrossRefGoogle Scholar
  9. [9]
    G. J. Chen, Research on Iron & Steel 38 (2010) No. 6, 44–47.Google Scholar
  10. [10]
    S. Li, X. Wei, L. Yu, Fuel 4 (2011) 1350–1360.CrossRefGoogle Scholar
  11. [11]
    L. Liu. China Metallurgy 19 (2009) No. 11, 33–39.Google Scholar
  12. [12]
    J. Y. Zhang, Z. H. Ma, X. B. Qian, S. M. Li, J. H. Lang, Acta Automat. Sin. 38 (2012) No. 6, 1017–1024.CrossRefGoogle Scholar
  13. [13]
    L. H. Zhang, L. J. Wu, X. H. Zhang, G. D. Ju, J. Iron Steel Res. Int. 20 (2013) No. 11, 33–40.CrossRefGoogle Scholar
  14. [14]
    H. X. Zhao, Z. F. Yuan, W. J. Wang, Y. F. Pan, S. Q. Li, J. Iron Steel Res. Int. 17 (2010) No. 12, 11–16.CrossRefGoogle Scholar
  15. [15]
    J. A. Zhou, D. L. Qi, X. Li, A safe and efficient recovery method for converter gas, China, CN201010151908.4 (2011).Google Scholar
  16. [16]
    H. Li, J. Feng, Y. Q. Li, L. F. Guo, W. C. Song, J. Univ. Sci. Technol. B. 33 (2011) No. 1, 83–87.Google Scholar
  17. [17]
    T. F. Yu, N. S. Cai, J. Chin. Soc. Power Eng. 24 (2004) No. 4, 560–566.Google Scholar
  18. [18]
    G. J. Liu, Z. Li, H. Huang, W. D. Ni, J. Tsinghua Univ: Nat. Sci. Ed. 48 (2008) No. 5, 844–847.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Jian-an Zhou
    • 1
    • 2
  • Xue-kai Jiang
    • 2
    • 3
  • Jian-bo Xie
    • 1
    • 2
  • Hua Zhang
    • 1
    • 2
  • Lei Li
    • 2
  • Bao Wang
    • 1
    • 2
  • Hong-wei Ni
    • 1
    • 2
  1. 1.State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory of Ferrous Metallurgy and Resources Utilization, Ministry of EducationWuhan University of Science and TechnologyWuhanChina
  3. 3.Guangxi Liuzhou Iron and Steel Group Co., Ltd.LiuzhouChina

Personalised recommendations