Central composite design for optimization and formulation of desulphurization of iron ore concentrate using atmospheric leaching process

  • Ali Mostafavi
  • Hassan Rezvanipour
  • Dariush Afzali
  • Tayebeh Shamspur
  • Amir Hajizadehomran
Original Paper


Owing to the negative effects of sulphur in iron ore on steelmaking process and environment, a tank leaching process was performed in atmospheric conditions to remove the sulphur from the iron ore concentrate and simultaneously to transform sulphide minerals into useful by-products. To achieve desirable sulphur removal rate and efficiency, central composite design was adopted as a response surface methodology for the optimization and evaluation of the process. A full-quadratic polynomial equation between the sulphur removal and the studied parameters was established to assess the behaviour of sulphur removal as a function of the factors and to predict the results in various conditions. The optimum conditions were obtained based on the variance tests and response surface plots, from which the optimized ranges for each factor resulting in the best response (corresponding to the highest percentage of desulphurization) could be then achieved. The results show that most desirable conditions are atmospheric leaching in 1.39 mol/dm3 nitric acid and 0.88 mol/dm3 sulphuric acid for 47 h. The designed process under the optimized desulphurization conditions was applied to a real iron ore concentrate. More than 75% of the total sulphur was removed via the leaching process. In addition to the desulphurization, the conversion of sulphide-bearing minerals into useful by-products, extraction of valuable metals, and executing the process under atmospheric conditions are the other advantages of the proposed method.


Desulphurization Iron ore concentrate Sulphide mineral leaching Central composite design Atmospheric leaching process 



We are grateful to the Gol-e-Gohar Mining and Industrial Co. for the financial support and supplying the study samples. Additional funding by the Shahid Bahonar University of Kerman is also acknowledged.


  1. [1]
    S.F. Zhang, L.Y. Wen, K. Wang, C. Zou, J. Xu, J. Iron Steel Res. Int. 22 (2015) 897–904.CrossRefGoogle Scholar
  2. [2]
    C.I. Nwoye, C.U. Nwoye, S.O. Nwakpa, E.C.D. Nwoye, O.C.A. Nwoye, B.C. Chukwudi, N.E. Idenyi, J. Biomed. Eng. Technol. 3 (2015) 8–14.Google Scholar
  3. [3]
    W. A. P., Chapman, Workshop Technology, 5th edition, Edward Arnold, London, 1973.Google Scholar
  4. [4]
    K. Wang, T.D. Xu, C. Shao, C. Yang, J. Iron Steel Res. Int. 18 (2011) No. 6, 61–66.CrossRefGoogle Scholar
  5. [5]
    H.R. Pour, A. Mostafavi, T.S. Pur, G.E. Pour, A.H. Omran, Physicochem. Probl. Miner. Process 52 (2016) 845–854.Google Scholar
  6. [6]
    W.Z. Lv, D.X. Yu, J.Q. Wu, L. Zhang, M.H. Xu, Proc. Combust. Instit. 35 (2015) 3637–3644.CrossRefGoogle Scholar
  7. [7]
    Y. Li, F.C. Zhou, Z.X. Zhou, Z.H. Tian, C. Yang, X.K. Tian, J. Iron Steel Res. Int. 23 (2016) 756–764.CrossRefGoogle Scholar
  8. [8]
    H. Sharif, M. Azizkarimi, in: A. Najafi (Ed.), Proceeding of Steel Symposium, Iron and Steel Society of Iran, Chadormalu, 2015, pp. 217–223.Google Scholar
  9. [9]
    X.H. Fan, H.L. Wen, Q. Deng, M. Gan, G.K. Shen, S.J. Huang, in: T. Jiang, J.Y. Hwang, P.J. Mackey, O. Yucel, G. Zhou (Ed.), 4th International Symposium on High-Temperature Metallurgical Processing, Wiley, 2013, pp. 553–561.Google Scholar
  10. [10]
    V. Soltanmohammadi, M. Noaparast, A.H. Kohsari, F. Zamani, Physicochem. Probl. Miner. Process 46 (2011) 173–190.Google Scholar
  11. [11]
    D.Q. Zhu, Z.Y. Ruan, T.J. Chun, J. Pan, J. Iron Steel Res. Int. 20 (2013) No. 10, 32–38.CrossRefGoogle Scholar
  12. [12]
    V.M. Abzalov, A.V. Sudai, B.P. Yur’ev, Steel Transl. 38 (2008) 1003–1007.CrossRefGoogle Scholar
  13. [13]
    B. Arvidson, M. Klemetti, T. Knuutinen, M. Kuusisto, Y.T. Man, C. Hughes-Narborough, Miner. Eng. 50 (2013) 4–12.CrossRefGoogle Scholar
  14. [14]
    M. Reichert, C. Gerold, A. Fredriksson, G. Adolfsson, H. Lieberwirth, Miner. Eng. 73 (2015) 109–115.CrossRefGoogle Scholar
  15. [15]
    M. Descostes, P. Vitorge, C. Beaucaire, Geochim. Cosmochim. Ac. 68 (2004) 4559–4569.CrossRefGoogle Scholar
  16. [16]
    J. W. Hamersma, M.L. Kraft, E.P. Koutsoukos, R.A. Meyers, Am. Chem. Soc. Div. Fuel Chem. Prepr. 17 (1976) No. 2, 1–14Google Scholar
  17. [17]
    E. Jorjani, S.C. Chelgani, S. Mesroghli, Miner. Eng. 20 (2007) 1285–1292.CrossRefGoogle Scholar
  18. [18]
    W.T. Xia, Z.D. Ren, Y.F. Gao, J. Iron Steel Res. Int. 18 (2011) No. 5, 1–4.CrossRefGoogle Scholar
  19. [19]
    D.Q. Zhu, H. Wang, J. Pan, C.C. Yang, J. Iron Steel Res. Int. 23 (2016) 661–668.CrossRefGoogle Scholar
  20. [20]
    I. Handayani, Y. Paisal, S. Soepriyanto, S.K. Chaerun, Hydrometallurgy 168 (2017) 84–93.CrossRefGoogle Scholar
  21. [21]
    R. Niaki, A. Abazarpoor, M. Halali, M. Maarefvand, G. Ebrahimi, Russ. J. Non-Ferr. Met. 56 (2015) 155–164.CrossRefGoogle Scholar
  22. [22]
    T. Wannachod, P. Phuphaibul, V. Mohdee, U. Pancharoen, S. Phatanasri, Miner. Eng. 77 (2015) 1–9.CrossRefGoogle Scholar
  23. [23]
    .M. Tripathy, Y. Ramamurthy, C. Raghukumar, Powder Technol. 201 (2010) 181–194.CrossRefGoogle Scholar
  24. [24]
    R. Buxton, Design Expert: Introduction, Loughborough University, Leicestershire, UK, 2007.Google Scholar
  25. [25]
    G. Bjorling, International Symposium on Hydrometallurgy 5 (1973) 165–178.Google Scholar
  26. [26]
    O. Gok, J. Ore Dress. 12 (2010) No. 24, 22–29.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Ali Mostafavi
    • 1
  • Hassan Rezvanipour
    • 1
    • 2
  • Dariush Afzali
    • 3
  • Tayebeh Shamspur
    • 1
  • Amir Hajizadehomran
    • 2
  1. 1.Department of ChemistryShahid Bahonar University of KermanKermanIran
  2. 2.Gol-e-Gohar Iron Ore Mining and Industrial CompanyKermanIran
  3. 3.Department of Environment, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran

Personalised recommendations