Skip to main content
Log in

Central composite design for optimization and formulation of desulphurization of iron ore concentrate using atmospheric leaching process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Owing to the negative effects of sulphur in iron ore on steelmaking process and environment, a tank leaching process was performed in atmospheric conditions to remove the sulphur from the iron ore concentrate and simultaneously to transform sulphide minerals into useful by-products. To achieve desirable sulphur removal rate and efficiency, central composite design was adopted as a response surface methodology for the optimization and evaluation of the process. A full-quadratic polynomial equation between the sulphur removal and the studied parameters was established to assess the behaviour of sulphur removal as a function of the factors and to predict the results in various conditions. The optimum conditions were obtained based on the variance tests and response surface plots, from which the optimized ranges for each factor resulting in the best response (corresponding to the highest percentage of desulphurization) could be then achieved. The results show that most desirable conditions are atmospheric leaching in 1.39 mol/dm3 nitric acid and 0.88 mol/dm3 sulphuric acid for 47 h. The designed process under the optimized desulphurization conditions was applied to a real iron ore concentrate. More than 75% of the total sulphur was removed via the leaching process. In addition to the desulphurization, the conversion of sulphide-bearing minerals into useful by-products, extraction of valuable metals, and executing the process under atmospheric conditions are the other advantages of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.F. Zhang, L.Y. Wen, K. Wang, C. Zou, J. Xu, J. Iron Steel Res. Int. 22 (2015) 897–904.

    Article  Google Scholar 

  2. C.I. Nwoye, C.U. Nwoye, S.O. Nwakpa, E.C.D. Nwoye, O.C.A. Nwoye, B.C. Chukwudi, N.E. Idenyi, J. Biomed. Eng. Technol. 3 (2015) 8–14.

    Google Scholar 

  3. W. A. P., Chapman, Workshop Technology, 5th edition, Edward Arnold, London, 1973.

    Google Scholar 

  4. K. Wang, T.D. Xu, C. Shao, C. Yang, J. Iron Steel Res. Int. 18 (2011) No. 6, 61–66.

    Article  Google Scholar 

  5. H.R. Pour, A. Mostafavi, T.S. Pur, G.E. Pour, A.H. Omran, Physicochem. Probl. Miner. Process 52 (2016) 845–854.

    Google Scholar 

  6. W.Z. Lv, D.X. Yu, J.Q. Wu, L. Zhang, M.H. Xu, Proc. Combust. Instit. 35 (2015) 3637–3644.

    Article  Google Scholar 

  7. Y. Li, F.C. Zhou, Z.X. Zhou, Z.H. Tian, C. Yang, X.K. Tian, J. Iron Steel Res. Int. 23 (2016) 756–764.

    Article  Google Scholar 

  8. H. Sharif, M. Azizkarimi, in: A. Najafi (Ed.), Proceeding of Steel Symposium, Iron and Steel Society of Iran, Chadormalu, 2015, pp. 217–223.

    Google Scholar 

  9. X.H. Fan, H.L. Wen, Q. Deng, M. Gan, G.K. Shen, S.J. Huang, in: T. Jiang, J.Y. Hwang, P.J. Mackey, O. Yucel, G. Zhou (Ed.), 4th International Symposium on High-Temperature Metallurgical Processing, Wiley, 2013, pp. 553–561.

  10. V. Soltanmohammadi, M. Noaparast, A.H. Kohsari, F. Zamani, Physicochem. Probl. Miner. Process 46 (2011) 173–190.

    Google Scholar 

  11. D.Q. Zhu, Z.Y. Ruan, T.J. Chun, J. Pan, J. Iron Steel Res. Int. 20 (2013) No. 10, 32–38.

    Article  Google Scholar 

  12. V.M. Abzalov, A.V. Sudai, B.P. Yur’ev, Steel Transl. 38 (2008) 1003–1007.

    Article  Google Scholar 

  13. B. Arvidson, M. Klemetti, T. Knuutinen, M. Kuusisto, Y.T. Man, C. Hughes-Narborough, Miner. Eng. 50 (2013) 4–12.

    Article  Google Scholar 

  14. M. Reichert, C. Gerold, A. Fredriksson, G. Adolfsson, H. Lieberwirth, Miner. Eng. 73 (2015) 109–115.

    Article  Google Scholar 

  15. M. Descostes, P. Vitorge, C. Beaucaire, Geochim. Cosmochim. Ac. 68 (2004) 4559–4569.

    Article  Google Scholar 

  16. J. W. Hamersma, M.L. Kraft, E.P. Koutsoukos, R.A. Meyers, Am. Chem. Soc. Div. Fuel Chem. Prepr. 17 (1976) No. 2, 1–14

  17. E. Jorjani, S.C. Chelgani, S. Mesroghli, Miner. Eng. 20 (2007) 1285–1292.

    Article  Google Scholar 

  18. W.T. Xia, Z.D. Ren, Y.F. Gao, J. Iron Steel Res. Int. 18 (2011) No. 5, 1–4.

    Article  Google Scholar 

  19. D.Q. Zhu, H. Wang, J. Pan, C.C. Yang, J. Iron Steel Res. Int. 23 (2016) 661–668.

    Article  Google Scholar 

  20. I. Handayani, Y. Paisal, S. Soepriyanto, S.K. Chaerun, Hydrometallurgy 168 (2017) 84–93.

    Article  Google Scholar 

  21. R. Niaki, A. Abazarpoor, M. Halali, M. Maarefvand, G. Ebrahimi, Russ. J. Non-Ferr. Met. 56 (2015) 155–164.

    Article  Google Scholar 

  22. T. Wannachod, P. Phuphaibul, V. Mohdee, U. Pancharoen, S. Phatanasri, Miner. Eng. 77 (2015) 1–9.

    Article  Google Scholar 

  23. .M. Tripathy, Y. Ramamurthy, C. Raghukumar, Powder Technol. 201 (2010) 181–194.

    Article  Google Scholar 

  24. R. Buxton, Design Expert: Introduction, Loughborough University, Leicestershire, UK, 2007.

    Google Scholar 

  25. G. Bjorling, International Symposium on Hydrometallurgy 5 (1973) 165–178.

    Google Scholar 

  26. O. Gok, J. Ore Dress. 12 (2010) No. 24, 22–29.

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Gol-e-Gohar Mining and Industrial Co. for the financial support and supplying the study samples. Additional funding by the Shahid Bahonar University of Kerman is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Rezvanipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafavi, A., Rezvanipour, H., Afzali, D. et al. Central composite design for optimization and formulation of desulphurization of iron ore concentrate using atmospheric leaching process. J. Iron Steel Res. Int. 25, 57–64 (2018). https://doi.org/10.1007/s42243-017-0002-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-017-0002-2

Keywords

Navigation