Skip to main content
Log in

Numerical simulation and experimental measurement of transport phenomena for coherent jet with CH4 + N2 mixed fuel gas

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Coherent jet technology has been widely used in EAF steelmaking process because of the longer potential core length and stronger impacting power of the supersonic oxygen jet. However, more oxygen and fuel gas are consumed to achieve excellent characteristics of coherent jets, which causes the increase in steelmaking cost. Computational fluid dynamics simulation and experimental measurement of the coherent jets with CH4 + N2 mixed fuel gas were carried out aiming at reducing the consumption of fuel gas. The numerical simulation results showed good agreement with the experimental data. As a result, high proportion of N2 negatively affects the combustion of CH4, which is not good for the protection of oxygen jets. While the gas composition is 75% CH4 + 25% N2, the N2 addition to the CH4 leads to an expanding of CH4 combustion zone, and the energy generated by the combustion reaction could be delivered to the molten bath more efficiently, which is one control scheme with high performance–price ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B. Deo, R. Boom, Fundamentals of Steelmaking Metallurgy, Prentice Hall, Upper Saddle River, NJ, 1993.

    Google Scholar 

  2. B. Sarma, P.C. Mathur, R.J. Selines, J.E. Anderson, in: Electric Furnace Conf. Proc., Iron and Steel Society, Louisiana, 1998, pp. 657–672.

    Google Scholar 

  3. A.R.N. Meidani, M. Isac, A. Richardson, A. Cameron, R.I.L. Guthrie, ISIJ Int. 44 (2004) 1639–1645.

    Article  Google Scholar 

  4. C. Harris, G. Holmes, M.B. Ferri, F. Memoli, E. Malfa, in: AISTech Iron and Steel Technology Conf. Proc., Association for Iron & Steel Technology, Cleveland, 2006, pp. 483–450.

  5. C. Candusso, M. Iacuzzi, S. Marcuzzi, D. Tolazzi, in: AISTech Iron and Steel Technology Conf. Proc., Association for Iron & Steel Technology, Cleveland, 2006, pp. 549–560.

  6. M. Alam, J. Naser, G. Brooks, A. Fontana, Metall. Trans. B 41 (2010) 1354–1367.

    Article  Google Scholar 

  7. W. Liu, R.Z. Liu, Industrial Heating 45 (2016) No. 5, 22–25.

  8. Y. Yang, R. Zhu, China Metallurgy 26 (2016) No. 9, 38–41.

  9. G.F. Li, R. Zhu, W.T. Liu, J.W. Li, The Chinese Journal of Process Engineering 8 (2008) S1, 86–89.

  10. Z.F. Yang, Z.Z. Wang, R. Zhu, L.H. Han, J. Univ. Sci. Technol. Beijing 29 (2007) S1, 81–84.

    Google Scholar 

  11. G. Zhang, R. Zhu, L.H. Han, C.F. Zhu, Special Steel 27 (2006) No. 5, 46–48.

  12. W.J. Mahoney, in: AISTech Iron and Steel Technology Conf. Proc., Association for Iron & Steel Technology, Pittsburgh, 2010, pp. 1071–1083.

  13. A. Mardani, S. Tabejamaat, M. Ghamari, Combust. Theory Modell. 14 (2010) 747–753.

    Article  Google Scholar 

  14. F.C. Christo, B.B. Dally, Combust. Flame 142 (2005) 117–130.

    Article  Google Scholar 

  15. E.H. Chui, G.D. Raith, Numer. Heat Transf. B-Fundam. 23 (1993) 269–276.

    Article  Google Scholar 

  16. B.F. Magnussen, B.H. Hjertager, Proc. Combust. Inst. 16 (1977) 719–730.

    Article  Google Scholar 

  17. A. Frassoldati, P. Sharma, A. Cuoci, T. Faravelli, E. Ranzi, Appl. Therm. Eng. 30 (2010) 376–383.

    Article  Google Scholar 

  18. A. Mardani, S. Tabejama, Int. J. Hydrogen Energy 35 (2010) 1324–1330.

    Article  Google Scholar 

  19. C. Galletti, A. Parente, M. Derudi, R. Rota, L. Tognotti, Int. J. Hydrogen Energy 34 (2009) 8339–8351.

    Article  Google Scholar 

  20. Z.C. Gao, Journal of Shanxi University (Natural Science Edition) 27 (2004) No.1, 32–34.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51574021 and 51474024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Sy., Zhu, R., Liu, Rz. et al. Numerical simulation and experimental measurement of transport phenomena for coherent jet with CH4 + N2 mixed fuel gas. J. Iron Steel Res. Int. 25, 28–36 (2018). https://doi.org/10.1007/s42243-017-0001-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-017-0001-3

Keywords

Navigation