Advertisement

Numerical simulation and experimental measurement of transport phenomena for coherent jet with CH4 + N2 mixed fuel gas

  • Shao-yan Hu
  • Rong Zhu
  • Run-zao Liu
  • Kai Dong
  • Fu-hai Liu
  • Guo-hong Ma
  • Rong-fang Su
Original Paper

Abstract

Coherent jet technology has been widely used in EAF steelmaking process because of the longer potential core length and stronger impacting power of the supersonic oxygen jet. However, more oxygen and fuel gas are consumed to achieve excellent characteristics of coherent jets, which causes the increase in steelmaking cost. Computational fluid dynamics simulation and experimental measurement of the coherent jets with CH4 + N2 mixed fuel gas were carried out aiming at reducing the consumption of fuel gas. The numerical simulation results showed good agreement with the experimental data. As a result, high proportion of N2 negatively affects the combustion of CH4, which is not good for the protection of oxygen jets. While the gas composition is 75% CH4 + 25% N2, the N2 addition to the CH4 leads to an expanding of CH4 combustion zone, and the energy generated by the combustion reaction could be delivered to the molten bath more efficiently, which is one control scheme with high performance–price ratio.

Keywords

Electric arc furnace Coherent jet Numerical simulation Jet measurement Mixed fuel gas 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51574021 and 51474024).

References

  1. [1]
    B. Deo, R. Boom, Fundamentals of Steelmaking Metallurgy, Prentice Hall, Upper Saddle River, NJ, 1993.Google Scholar
  2. [2]
    B. Sarma, P.C. Mathur, R.J. Selines, J.E. Anderson, in: Electric Furnace Conf. Proc., Iron and Steel Society, Louisiana, 1998, pp. 657–672.Google Scholar
  3. [3]
    A.R.N. Meidani, M. Isac, A. Richardson, A. Cameron, R.I.L. Guthrie, ISIJ Int. 44 (2004) 1639–1645.CrossRefGoogle Scholar
  4. [4]
    C. Harris, G. Holmes, M.B. Ferri, F. Memoli, E. Malfa, in: AISTech Iron and Steel Technology Conf. Proc., Association for Iron & Steel Technology, Cleveland, 2006, pp. 483–450.Google Scholar
  5. [5]
    C. Candusso, M. Iacuzzi, S. Marcuzzi, D. Tolazzi, in: AISTech Iron and Steel Technology Conf. Proc., Association for Iron & Steel Technology, Cleveland, 2006, pp. 549–560.Google Scholar
  6. [6]
    M. Alam, J. Naser, G. Brooks, A. Fontana, Metall. Trans. B 41 (2010) 1354–1367.CrossRefGoogle Scholar
  7. [7]
    W. Liu, R.Z. Liu, Industrial Heating 45 (2016) No. 5, 22–25.Google Scholar
  8. [8]
    Y. Yang, R. Zhu, China Metallurgy 26 (2016) No. 9, 38–41.Google Scholar
  9. [9]
    G.F. Li, R. Zhu, W.T. Liu, J.W. Li, The Chinese Journal of Process Engineering 8 (2008) S1, 86–89.Google Scholar
  10. [10]
    Z.F. Yang, Z.Z. Wang, R. Zhu, L.H. Han, J. Univ. Sci. Technol. Beijing 29 (2007) S1, 81–84.Google Scholar
  11. [11]
    G. Zhang, R. Zhu, L.H. Han, C.F. Zhu, Special Steel 27 (2006) No. 5, 46–48.Google Scholar
  12. [12]
    W.J. Mahoney, in: AISTech Iron and Steel Technology Conf. Proc., Association for Iron & Steel Technology, Pittsburgh, 2010, pp. 1071–1083.Google Scholar
  13. [13]
    A. Mardani, S. Tabejamaat, M. Ghamari, Combust. Theory Modell. 14 (2010) 747–753.CrossRefGoogle Scholar
  14. [14]
    F.C. Christo, B.B. Dally, Combust. Flame 142 (2005) 117–130.CrossRefGoogle Scholar
  15. [15]
    E.H. Chui, G.D. Raith, Numer. Heat Transf. B-Fundam. 23 (1993) 269–276.CrossRefGoogle Scholar
  16. [16]
    B.F. Magnussen, B.H. Hjertager, Proc. Combust. Inst. 16 (1977) 719–730.CrossRefGoogle Scholar
  17. [17]
    A. Frassoldati, P. Sharma, A. Cuoci, T. Faravelli, E. Ranzi, Appl. Therm. Eng. 30 (2010) 376–383.CrossRefGoogle Scholar
  18. [18]
    A. Mardani, S. Tabejama, Int. J. Hydrogen Energy 35 (2010) 1324–1330.CrossRefGoogle Scholar
  19. [19]
    C. Galletti, A. Parente, M. Derudi, R. Rota, L. Tognotti, Int. J. Hydrogen Energy 34 (2009) 8339–8351.CrossRefGoogle Scholar
  20. [20]
    Z.C. Gao, Journal of Shanxi University (Natural Science Edition) 27 (2004) No.1, 32–34.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Shao-yan Hu
    • 1
    • 2
  • Rong Zhu
    • 1
    • 2
  • Run-zao Liu
    • 1
    • 2
  • Kai Dong
    • 1
    • 2
  • Fu-hai Liu
    • 1
    • 2
  • Guo-hong Ma
    • 1
    • 2
  • Rong-fang Su
    • 3
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Key Laboratory of Research Center of Special Melting and Preparation of High-end Metal MaterialsUniversity of Science and Technology BeijingBeijingChina
  3. 3.Rongcheng Jingye Technology Limited Company BeijingBeijingChina

Personalised recommendations